

November 24, 2010

Mr. Ed Stuart Department of Environmental Quality Northern Regional Office 13901 Crown Court Woodbridge, VA 22193

Subject:

Rappahannock Water and Sewer Authority Town of Sperryville WWTP

Copper Limit Compliance Strategy Water Effects Ratio Study

Dear Mr. Stuart,

Please see the enclosed copy of the Water Effects Ratio (WER) Study conducted at the Sperryville WWTP in 2010 as part of the planned copper compliance strategy for the Rappahannock Water and Sewer Authority (RWSA). Enclosed are two (2) copies of the completed WER Study. Additionally, ESS will submit a separate copy to be sent to Mr. Alex Barron at DEQ Central Office and send the last copy to RWSA.

Should you have questions or comments, please feel free to contact me at 540-825-6660.

Best regards,

Cody J. Hoehna, Operations Manager Environmental Services Division

Cc:

Mr. Alex Barron, DEQ

Mr. Kenneth Thompson, RWSA

Thompson, Alison (DEQ)

From: Thompson, Alison (DEQ)

Sent: Wednesday, December 08, 2010 1:11 PM

To: Barron, Alex (DEQ)

Cc: Thompson, Alison (DEQ)

Subject: Town of Sperryville WER Study for Copper

Alex.

The Town of Sperryville has submitted the completed WER Study for Copper. I will place a copy of the report in the mail for you. We met with their consultant (Don Hearl from ESS) a year or so ago to discuss the possibility.

Once you receive the report, please let me know if there is anything else you need from Northern.

alison

Alison Thompson
Water Permits Technical Reviewer
Virginia Dept of Environmental Quality
Northern Regional Office
13901 Crown Ct
Woodbridge, VA 22193
(703) 583-3834
alison.thompson@deq.virginia.gov

To Alex 12/8/10 via inkroffice mail

Rappahannock Water and Sewer Authority

Town of Sperryville WWTP
Copper Limit Compliance Strategy

Water Effects Ratio Study

Prepared for, Virginia Department of Environmental Quality

Prepared by, Environmental System Services, LTD.

November 23, 2010

NORTHERN

NOV 2 9 2010

REGIONAL OFFICE

Thompson, Alison (DEQ)

From: Thompson, Alison (DEQ)

Sent: Wednesday, December 08, 2010 2:07 PM

To: Barron, Alex (DEQ)

Cc: Thompson, Alison (DEQ)

Subject: RE: Town of Sperryville WER Study for Copper

The permit expires on August 30, 2011. Ideally it would be nice to have the WER reviewed and accepted so that it could be public noticed with the permit for the reissuance.

Thanks

а

Alison Thompson
Water Permits Technical Reviewer
Virginia Dept of Environmental Quality
Northern Regional Office
13901 Crown Ct
Woodbridge, VA 22193
(703) 583-3834
alison.thompson@deq.virginia.gov

From: Barron, Alex (DEQ)

Sent: Wednesday, December 08, 2010 1:47 PM

To: Thompson, Alison (DEQ)

Subject: RE: Town of Sperryville WER Study for Copper

Hi Alison:

I found a copy of this ESS report in my mailbox Monday, so you keep your copy.

I will try to review the report as soon as I can but I probably won't be able to review the report until the first of the year. I know that our EPA reviewer will not be able to "review my review" for some time either because of prior commitments.

What do I need to know about timing issues for the Sperryville Permit? Let me know when you need a decision on the approvability of this study, and I'll do my best to get to this on time.

Thanks

From: Thompson, Alison (DEQ)

Sent: Wednesday, December 08, 2010 1:11 PM

To: Barron, Alex (DEQ) **Cc:** Thompson, Alison (DEQ)

Subject: Town of Sperryville WER Study for Copper

Alex,

The Town of Sperryville has submitted the completed WER Study for Copper. I will place a copy of the report in the mail for you. We met with their consultant (Don Hearl from ESS) a year or so ago to discuss the possibility.

Once you receive the report, please let me know if there is anything else you need from Northern.

alison

Alison Thompson
Water Permits Technical Reviewer
Virginia Dept of Environmental Quality
Northern Regional Office
13901 Crown Ct
Woodbridge, VA 22193
(703) 583-3834
alison.thompson@deq.virginia.gov

Town of Sperryville WWTP Copper Limit Compliance Strategy: Water Effects Ratio Study

Table of Contents

INTRODUC	ΓΙΟΝ2
I. Copper	Water Effect Ratio (WER) Study Protocol
B. Collect C. Labora D. Condu E. Chemi 1. 2. F. Calcula G. Report	1 Effluent and Receiving Water Flows
TABLES & F	<u>IGURES</u>
Table 1, Time Table 2, WER Table 3, Analy	The Town of Sperryville WWTP
APPENDICE	<u>s</u>
Appendix 1:	Flow Diagram of Town of Sperryville WWTP
Appendix 2:	Environmental Systems Service, Ltd. (ESS) Sampling Protocol for WER Study.
Appendix 3:	Coastal Bioanalysts, Inc. SOP ETS105G (Ceriodaphnia dubia Acute Test) and modifications for this project.
Appendix 4:	Coastal Bioanalyists, Inc. Report of Copper WER
Appendix 5:	Reed & Associates TOC, DOC, and Cu Analysis Report of WER Samples
Appendix 6:	ESS Analysis Report of Samples

Town of Sperryville WWTP Copper Limit Compliance Strategy: Water Effects Ratio Study Executive Summary

INTRODUCTION

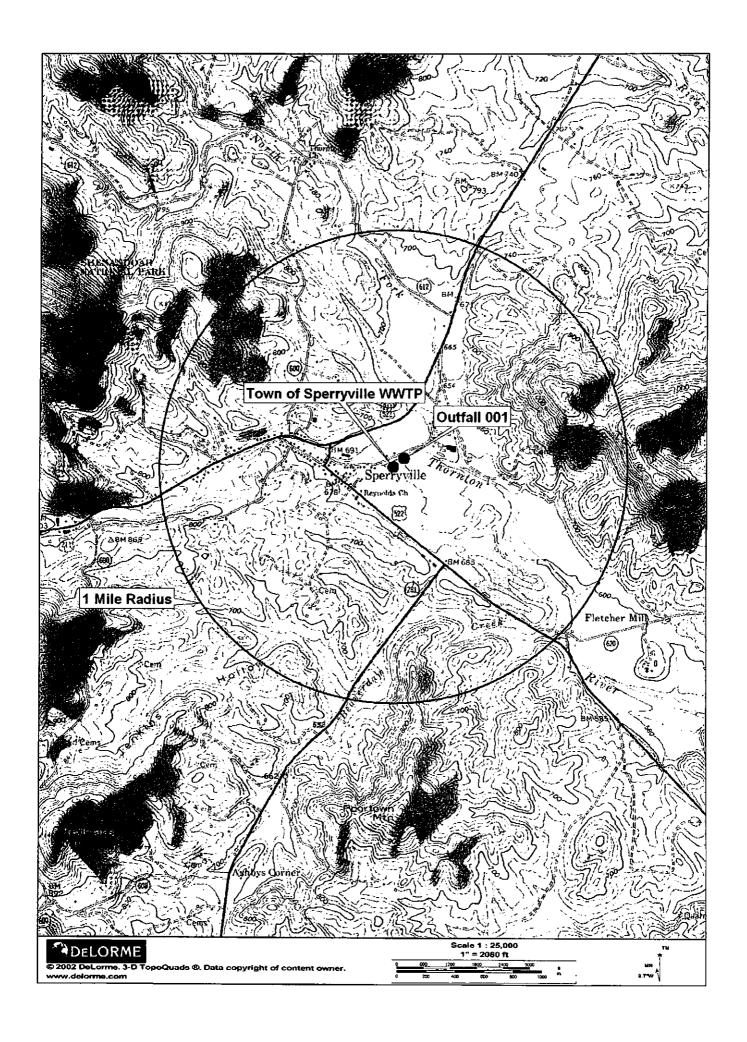
The Sperryville WWTP is located in Rappahannock County in the Town of Sperryville, see *TopoQuad on Page 4*. The site is bounded by the Thornton River to the North, and undeveloped land to the south, east and west. The plant began operation in the 1970's. At that time Rappahannock Water and Sewer Authority (RWSA) was established to provide operations and maintenance (O&M) of the treatment plant. O&M services for the facility are currently provided by RWSA.

The design flow of the system is 0.055 MGD. The system consists of flow equalization, duel aeration tanks, clarifiers, a cascade aerator, and ultra-violet disinfection units. In 2007 a flow equalization tank was installed to mitigate surge flows caused by excessive Inflow and Infiltration (1&I). The ultra-violet disinfection system was installed in 2008. A schematic of the treatment flow pattern is shown in *Appendix 1*. Effluent discharged from the treatment facility enters the Thornton River via outfall 001 and is monitored to maintain compliance with VPDES Permit VA0062880.

The Thornton River (receiving stream) is located within Section 4 of the Rappahannock River Basin. In 2000 flow characteristics were reviewed and it was determined that flow in the Thornton River should be approximated using the gauging station on the Rush River at Washington, Virginia (#01662500) for the following reasons: there was no current historical stream flow data available for the Thornton River, the drainage areas are comparable, the topography at Sperryville, and both rivers are located in Rappahannock County. The water segment receiving the discharge via Outfall 001 is considered to have 7Q10 and 1Q10 of 0.0 MGD. As such, no mixing zone was allowed for this study thus 100% final effluent was used.

Total recoverable copper (TR Cu) and zinc limits were established for Sperryville STP in the 2004 permit reissuance. After several years of metals testing using conventional "non clean" technique RWSA submitted additional data, derived using "clean technique" for ultra-low metal detection, to the DEQ for review. A request for permit modification to revise metals concentration limits was submitted. The new data was evaluated by the DEQ and it was determined that the limit for zinc would be removed from the permit. The DEQ also decided to replace the previous limit of 6 ug/L (or parts per billion) for TR Cu with a revised limit of 18 ug/L.

Currently the treatment facility is unable to consistently achieve compliance with permitted water quality standards for copper. After significant copper monitoring, and review along with correspondence with the Department of Environmental Quality (DEQ), it has been determined that the treatment facility does not possess the technology to effectively remove metals; therefore it is very unlikely that consistent compliance can be attained, regardless of any interim treatment measures implemented. RWSA has developed, and is implementing, a compliance strategy which consists of the identification and implementation of site-specific regulatory alternatives for the permitted limit of copper.



A water effects ratio (WER) is the site-specific regulatory alternative that RWSA wishes to pursue as part of the planned compliance strategy. Initially, permit limits were established using laboratory generated criteria, which in some cases may not accurately reflect the actual impact of copper toxicity on the receiving stream. Site-specific information will be generated and used to develop a site specific copper limit based on approval from the regulatory agencies. This document contains the plans and results from conducting the proposed WER study.

RWSA utilized the services of Environmental Systems Service, Ltd. (ESS) for the collection and analysis of effluent samples and final report generation. The Standard Operating Procedures (SOPs) to be used in performing each project task have been provided to RWSA and are included as attachments to this document. Please note that these SOPs are proprietary documents and should be treated as such under the Freedom of Information Act.

The WER Study was conducted on 7/5/10 and 8/2/10. Sample results from each four hour composite sampling event and their respective WER ratio calculations have been further summarized in Section I.H on page 13. Appendices 4 through 6 include laboratory support data gathered during each of the collection events.

I.

Rappahannock Water and Sewer Authority Town of Sperryville WWTP Copper Water Effect Ratio (WER) Study Protocol

Rappahannock Water and Sewer Authority Town of Sperryville WWTP Copper Water Effect Ratio Study Protocol

This document provides the protocols that will be used by RWSA to develop a Water Effect Ratio (WER) for copper for use in permitting the discharge from Outfall 001 at Sperryville Wastewater Treatment Plant. In general, the measures used to develop the WER will follow the procedures described in EPA's guidance document *Streamlined Water-Effect Ratio Procedure for Discharges of Copper (EPA-822-R-01-005 March 2001)*. Specific protocols to be used in development of the WER are presented below:

A. Critical Effluent and Receiving Water Flows

In developing the effluent limit for copper on Outfall 001, DEQ staff used an effluent flow of 0.055 MGD and the 7Q10 flow for the Thornton River of 0.0 MGD. The copper limit is based on Virginia's acute water quality criterion for the protection of aquatic life. Consequently, use of the 1Q10 flow for the Thornton River is appropriate as provided in Virginia's Water Quality Standards regulation (9 VAC 25-260-140).

B. Collection and Handling of Upstream Water and Effluent

Samples for development of the WER will be collected from Outfall 001 two sampling events spaced at least four weeks apart. It is anticipated that sampling will begin early in 2010. Normally WER studies should be conducted during a period of dry weather flow, however in this case there will be no samples from the Thornton River blended to make the ratio, due to the 7Q10 and 1Q10 flows established by the DEQ as zero.

Samples of the effluent will be collected by RWSA's contractor ESS using procedures described in *Appendix 2*. Once collected the samples will be stored at $0-4^{\circ}$ C in the dark with no air space in the sample container and transported to our contract laboratory Coastal Bioanalysts, Inc. (CBI) in Gloucester, Virginia for toxicity testing. Appropriate chain of custody sample handling procedures will be used for all samples.

C. Laboratory Dilution Water

Laboratory dilution water will be synthetic freshwater prepared in accordance with *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition, October 2002 (EPA-821-R-02-012).* The laboratory dilution water will have DOC, TOC, and TSS concentrations < 5 mg/L, and a hardness that is reasonably close to

that of the Outfall 001 Effluent samples. The alkalinity and pH of the laboratory water will be appropriate for its hardness as given in EPA-821-R-02-012.

D. Conducting Toxicity Tests

Toxicity tests used for determination of the WER will be 48-hour, static, acute tests with Ceriodaphnia dubia carried out in accordance with CBI's SOP ETS105G as modified for this project, see Appendix 3. CBI's testing protocols are consistent with procedures described in EPA-821-R-02-012 and ASTM E 729-96.

For calculation of the final WER, RWSA plans to perform two (2) definitive WER tests using samples collected from Outfall 001 as described in Section B above. In both tests, 100% Effluent will be used, which will from this point on be referred to as "Site Water". The toxicity of copper spiked Site Water will then be compared with the toxicity of copper spiked laboratory water for determination of the WER. Preparation of the Site Water test solutions will generally follow the procedure described in E.15.b of Appendix A of EPA-822-R-01-005. Preparation of the laboratory water test solutions will generally follow the procedure described in E.16.b of Appendix A of EPA-822-R-01-005.

Prior to the start of each definitive test, CBI will perform 48-hour range finding tests with *Site Water* and *Laboratory Water*. The results of these tests will be used to establish the appropriate range of copper concentrations for use in the definitive WER tests.

Detailed procedures for preparation of the Site Water and Laboratory Water treatments and for the conduct of the range finding and preliminary and definitive WER tests are described in CBI's Modifications to SOP ETS105, see Appendix 3. A general timeline for conducting each definitive WER test is provided in Table 1 on Page 8.

E. Chemical and Other Measurements

Development of the WER will involve numerous analytical measurements for copper and other parameters performed on the *Site Water*, *Laboratory Water*, and toxicity test solutions. A narrative discussion of the planned analytical testing is provided below.

1. Copper

The number and types of planned analyses for copper are shown in Table 2 on page 10. During each of the two WER sampling events, effluent samples will be collected by ESS using "clean" sampling procedures as described in *Appendix 2*. Aliquots of both samples will be analyzed for total and dissolved copper by the contracted lab using EPA Method 200.8.

The remainder of the samples to be analyzed for total recoverable and dissolved copper, using conventional analytical methods, will be prepared by CBI in the laboratory prior to and following each WER toxicity test.

			ed Timeline for Conducting Each WER Test
DAY	TIME	RESPONSIBLE	ACTIVITY
	0900	ESS	Collect Samples: Effluent, offsite no later than 1100
	1500	ESS	Deliver to CBI
0	1500-1600		Initial water quality measurements
J		СВІ	 Prepare unspiked SITE and LAB water and place in sample containers for TOC, TSS
			Refrigerate remaining effluent samples
	1600-1700	CBI	Set up and begin range finding tests with SITE & LAB WATER
1	1600-1700	CBI	24-hour animal counts and water quality readings range finding tests
2	1600-1700	СВІ	 End range finding tests Determine lowest concentrations causing 100% mortality (C_{RTL})
	0800 - 0900	CBI	Begin warming Effluent
	0900-1000		Initiate preparation of SITE WATER serial dilutions:
		CBI	Prepare spiked Effluent serial dilutions
			• Let stand 3 hours
	1230-1300		
		CBI	
		CBI	
j	··· ··· · · · · · · · · · · · · · · ·		
	1300-1330	CBI	Prepare LAB WATER Treatments:
			Allow to stand 1 – 3 hours
	1430-1530		Final pretest activities:
			30 mls each treatment removed for initial water chemistry
3			• 25 mls added to 6 test chambers * (7 Concentrations + Control) * 2
			(LAB & SITE WATER)
			 25 mls added to 2 duplicate test chambers * (7 concentrations + Contro * 2 (LAB & SITE WATER)
		СВІ	150 ml each treatment (7 concentrations + Control) * 2 (SITE & LAB WATER) added to sample bottles with preservative and stored
			• 150 ml each treatment (7 concentrations + control) * 2 (SITE & LAB WATER) filtered through 0.45 um filter, filtrate placed into sample
			bottles with preservative and stored
			 Prepare equipment blank: 150 ml laboratory water filtered through 0.45
	1.000		um filter, and filtrate placed into sample bottle containing preservative
	1530	CBI	TEST START:
	1520		Organisms randomly placed into test chambers
4	1530	CBI	24-hour water quality measurements using first set of chemistry duplicates
	1530-1730		TEST END:
			Animals counted/observed and findings recorded (LAB & SITE
			WATER)
			Water chemistry measured using second set of chemistry duplicates
			 Filter through 0.45 um filter all 6 replicates from the following treatmer
			(SITE & LAB water) and place into sample bottles with preservative:
5		CBI	o Controls
<i>y</i>		CDI	 All concentrations with partial mortalities
			 The highest concentration with no adverse effects
			 The lowest concentration with complete mortality
			 Ship all metals samples T=0 and T=48 copper, and SITE and LAB wate
			TOC, and TSS to ESS Laboratory Services for analyses
			·

Detailed procedures for the preparation of the samples for copper analyses are described in CBI's Modifications to SOP ETS105 *Appendix 2*. The samples prepared by CBI will be transported to the analytical laboratory, where they will be analyzed for copper using Inductively Coupled Plasma (ICP), EPA Method 200.7. The DLS detection level for copper using ICP 200.7 is five (5) ug/L. The detection level of 2 ug/L is believed to be at least three (3) times lower than the copper concentrations that will be employed in the WER toxicity testing.

All samples to be analyzed for copper will be collected, preserved, and transported in accordance with appropriate QA/QC procedures and in a manner to minimize the potential for contamination.

2. Additional Analyses

Analyses that are planned for the WER study are presented in Table 2 on page 10. Analytical methods and detection levels that will be used with each parameter are presented in Table 3 on page 11. These analyses are being performed for one of the following reasons:

- They are required by the toxicity testing guidelines
- They are recommended by EPA guidelines for conducting a WER study
- They are parameters routinely measured and reported on the DMRs

Parameters Required by Toxicity Testing Guidelines or Recommended by WER Guidance.

Water quality parameters required by the toxicity testing guidelines are routinely monitored by CBI during the conduct of toxicity tests, and are discussed in CBI's SOP ETS105G and modifications to SOP ETS105, *Appendix 3*. In addition, EPA's WER Guidance (EPA-822-R-01-005) recommends that hardness, pH, alkalinity, TOC, TSS, and DOC be measured in the site water and/or laboratory dilution water. Chemistry controls" (or dummy replicates) will be used to obtain the required measurements in toxicity test solutions at 24-hours and 48-hours in order to avoid contamination.

DMR Parameters

In addition to the total copper analyses described in E.1 above, the following DMR parameters were analyzed at Outfall 001 during each sampling event: Flow, temperature, dissolved oxygen (DO), pH, biological oxygen demand (BOD), total suspended solids (TSS), E. Coli, hardness, orthophosphates, total phosphorous, total kjeldahl nitrogen (TKN), nitrate/nitrite (NO2/NO3), and total nitrogen (TN).

RWSA SPERRYVILLE WWTP WER Study 2010 Table 2

SAMPLE DATE	7/5/2010	7/7/2010	8/2/2010	8/4/2010	8/19/2010
Flow (MGD)	0.0120		0.0089		
· · · · · · · · · · · · · · · · · · ·	Results in				
Parameters	Mg/L	Mg/L	Mg/L	Mg/L	Mg/L
E.Coli	<1		<1		
TSS	1.34		3.4		
TOC	<1		<1		
NO2/NO3	31.7		38.9		
DOC	<1		<1		
BOD	2		<2		- "
Hardness	133		207		
Alkalinity	107		100		
OPO4	4.59		4.99		
TP	4.82		5.08		
Diss. Copper	0.015		0.018		•
Total Copper	0.017		0.019		
NH3	0.61	- 1111	0.17		
TKN	2.18		3.01		
TN	33.88		41.91		
TSS (SFW)		1.1		<1	
TSS (SITE)		1.8		2.51	
Total Copper (LC)		<0.002		<0.002	
Total Copper (L3)				0.013	
Total Copper (L4)		0.017		0.018	
Total Copper (L5)		0.025		0.025	
Total Copper (L6)		0.035		0.034	
Total Copper (L7)				0.050	
Total Copper (SC)		0.018		0.017	
Total Copper (S3)		0.168			·
Total Copper (S4)		0.227		0.220	
Total Copper (S5)		0.315		0.302	
Total Copper (S6)				**0.632	
Total Copper (S7)				0.597	
TOC (SFW)		1		0.8	*1.6
DOC (SFW)		<0.5			*0.8
TOC (SITE)		6.2	*6.2	6.7	
DOC (SITE)		3.5	*4.3		
WER	8.042		6.029		

^{*}Re-analysis of aliquot in HCL preservation for TOC and unpreserved for TOC

^{**}Test concentrations were prepared as a serial dilution of the highest test concentration (S7) therefore all other tests concentrations would have been high. This anomally is higher than S7 and logically cannot be explained. Therefore the LC50 was calculated using the nominal value for S6 of 420 ppb.

FINAL WER (Calculated Geometric Mean of Ratios)	6.963	
FINAL WER (Maximum Allowable WER From EPA)	5.000	
Current VPDES Permit Limit for Total Recoverable Copper	18	ug/L
		_
Proposed VPDES Permit Limit for TR Copper Based On WER Study	90.00	ug/L

Table 3. Analytical Methods and Detection Levels for use in WER Study

Parameter	Analytical Method	LOD	LOQ	Units
Alkalinity	SM 2320 B	1	2	PPM
Biochemical Oxygen	SM 5210 B		2	PPM
Conductivity	SM 2510		1	PPM
Dissolved Copper	EPA Method 200.7	0.001	0.005	PPM
Dissolved Organic Carbon	SM 5310 C		1	PPM
Dissolved Oxygen	SM 4500 OG	0.1		PPM
E. Coli	SM 9223 B		2	MPN
Hardness	SM 2340C	1	2	PPM
Nirate/Nitrite	SM 4500 NO3F		0.05	PPM
Orthophosphate	SM 4500 PE	0.007	0.05	PPM
рН	SM 4500-H+ B			SU
Total Kjeldahl Nitrogen	SM 4500 NH3B	0.62	0.75	PPM
Total Nitrogen	Calculation			
Total Organic Carbon	SM 5310 C	0.2	1	PPM
Total Phosphorus	SM 4500 PBE	0.01	0.05	₽PM
Total Recoverable Copper	EPA Method 200.7	0.001	0.005	PPM
Total Suspended Solids	SM 2540D		1	PPM

F. Calculation of the Water Effects Ratio and Site-Specific Criteria

The acceptability of each toxicity test will be evaluated individually. Tests with substantial deviations from the laboratory practices presented in the EPA WER guidance and/or EPA, ASTM, and CBI protocols for conduct of the tests will be rejected.

The LC₅₀s for laboratory and site water tests will be calculated using dissolved (mean) and total copper concentrations. The method employed for calculation of the LC₅₀ will be appropriate for the data, and the same computational methods (e.g., Probit, computational interpolation, etc.) will be employed for both tests from a particular sampling event. Guidelines for calculation of laboratory and site water EC50s presented in Appendix A, Section G.3 and G.4 of EPA's Streamlined WER Guidance will be followed for calculation of the LC50s in laboratory and site water, respectively.

The LC₅₀s determined for the laboratory water, site water, and the Species Mean Acute Value (SMAV) for C. dubia will be normalized to the same hardness. A sample WER will be determined for each pair of hardness-normalized LC₅₀ values as follows:

LC₅₀ (site water)
LC₅₀ (laboratory water)*

*If the hardness-normalized laboratory water LC50 is less then the hardness-normalized SMAV value for *C. dubia*, then the hardness-normalized SMAV value will be used.

The site WER will be calculated as the geometric mean of the two (or more) sample WERs. Site-specific dissolved copper criteria will then be calculated as Virginia's default dissolved copper criteria multiplied by the WER.

G. REPORTING

Following completion of the WER study RWSA will schedule a meeting with DEQ staff to review the results and the calculated WER. After the meeting, a report will be developed and provided to the DEQ that will include the following:

- Summary of the sampling and analytical procedures employed
- Summary of the analytical results
- Summary of QA/QC results, addressing data validation
- Discussion of the calculations used to derive the WER
- The final copper WER

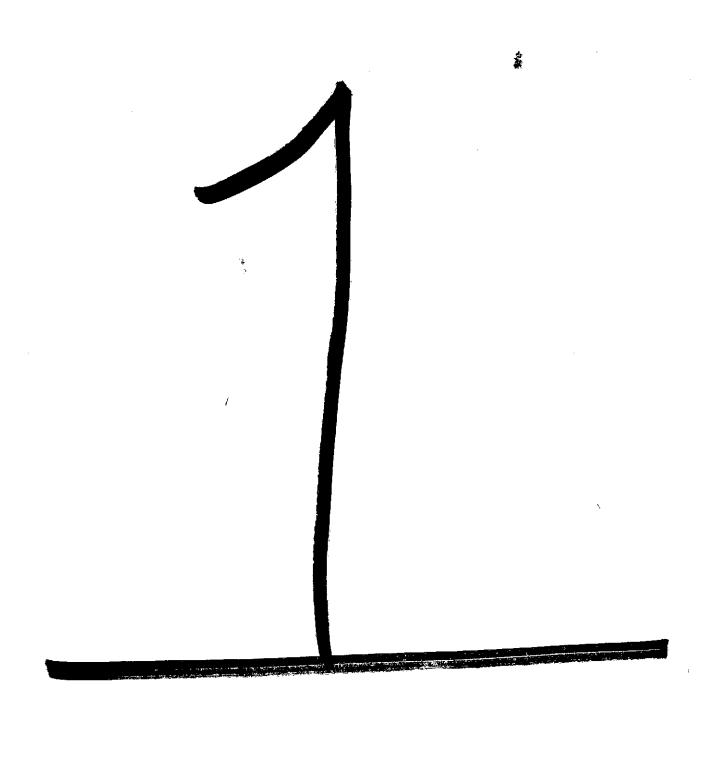
H. INTERPRETATION OF WER RESULTS

Of the WER Study collection event that occurred on 7/5/10, site water yielded a WER of 9.082 for site water EC50 divided by lab water EC50, and a ratio of 8.042 for the site water divided by the Species Mean Acute Value from Appendix B of EPA Streamlined WER Procedures for Discharges of Copper. The lower of the two ratios was used in the calculation of the final ratio (geometric mean of both sampling events). See Table 4 below.

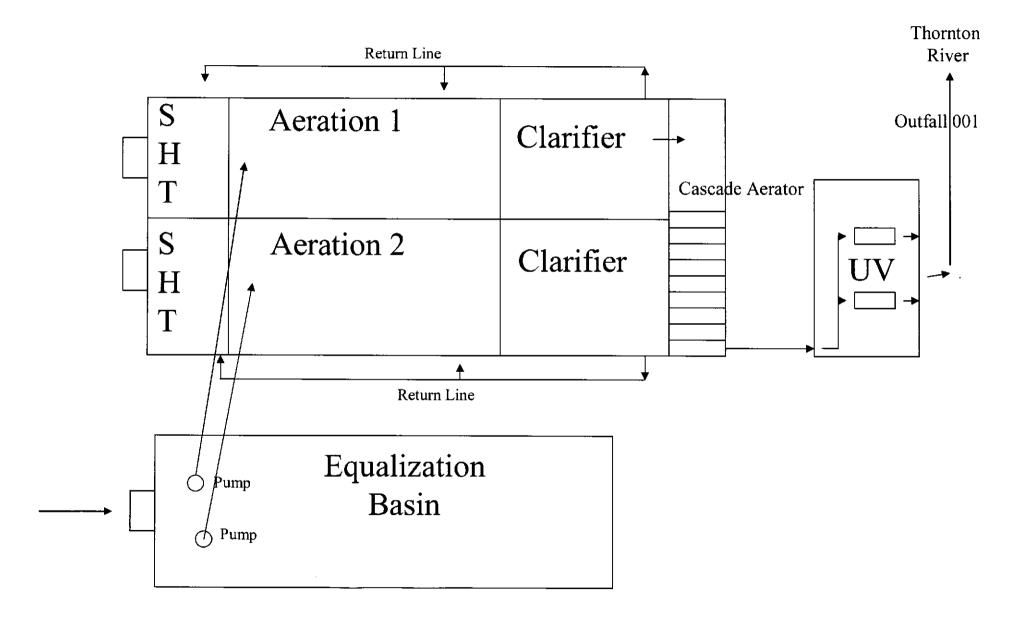
Of the WER Study collection event that occurred on 8/2/10, site water yielded a WER of 11.91 for site water EC50 divided by lab water EC50, and a ratio of 6.029 for the site water divided by the Species Mean Acute Value from Appendix B of EPA Streamlined WER Procedures for Discharges of Copper. The lower of the two ratios was used in the calculation of the final ratio (geometric mean of both sampling events). See Table 4 below.

Table 4
Study 1

Test Matrix	48HR EC50 (ug/L)	95% C.L.	Test Hardness (mg/L CaCO3)	Normalized 48HR EC50 (ug/L)
Lab Water	28.53	27.13-29.68	132	28.53
Site Water	259.1	250.4-268.2	132	259.1
	WER	Normalized Site Water	Normalized Lab or	
Chemical Basis	Denominator	EC50 (ug/L)	SMAV EC50 (ug/L)	WER
Total Copper	Lab Water	259.1	28.53	9.082
Total Copper	EPA 2001	259.1	32.22	8.042


Study 2

	48HR EC50		Test Hardness (mg/L	Normalized 48HR
Test Matrix	(ug/L)	95% C.L.	CaCO3)	EC50 (ug/L)
Lab Water	23.12	21.62-24.73	198	23.34
Site Water	278.0	264.4-292.2	200	278
·	WER	Normalized Site Water	Normalized Lab or	
Chemical Basis	Denominator	EC50 (ug/L)	SMAV EC50 (ug/L)	WER
Total Copper	Lab Water	278	23.34	11.91
Total Copper	EPA 2001	278	46.11	6.029


Final WER	6.963
Maximum Allowable WER (EPA)	5.000
VPDES Copper Limit	18
Proposed VPDES Copper Limit with WER Applied	90

The WER for Sperryville WWTP has been calculated by using the geometric mean of the lowest ratios determined from 7/5/10 and 8/2/10, 8.042 and 6.029 respectively. The geometric mean of these two ratios is calculated as 6.963, however the maximum allowable ratio by EPA is 5.000. Therefore applying the WER of 5.000 to the current permitted limit for Copper of 18 ug/L yields a concentration of 90 ug/L.

Flow Diagram of Rappahannock Water and Sewer WWTP

Protocol for Collection and Handling of Water Samples for use in Rappahannock Water and Sewer Authority – Sperryville WWTP Water Effect Ratio (WER)

General Guidelines

Preliminary Considerations

- 1. All sample equipment will be cleaned and preserved by one of the following labs;
 - Environmental System Services
 - Coastal Bioanalysts
- 2. ESS will collect a monthly Hardness in the Thornton, at Outfall 001 until study has been completed.
- 3. ESS will provide analytical services for the Hardness and all other samples collected for TOC, and TSS.
- 4. <u>DMR Reporting</u>- All DMR required parameters measured in the field will be reported to ESS staff responsible for DMR completion in time to complete the DMR by the 8th of the month following collection.

Sampling Plan

- 1. ESS will perform two (2) sampling events to collect the WER samples.
- 2. Each WER sample will be collected with a peristaltic pump, using new vinyl tubing. Tubing will be flushed with approximately 1 gallon of wastewater prior to collection of samples.
- 3. Five (5) gallons will be collected in a new cubitainer filled to the top of the container, properly packaged in a cooler and preserved on ice. Cubitainers will be rinsed with sample prior to filling. The properly preserved and packaged carboy will be transported and relinquished to Coastal Bioanalyst Inc. (CBI), while maintaining the sample chain of custody.
- 4. ESS will collect the sample early during the day to allow the ESS technician to deliver the sample to CBI by 1500, the day of collection.

Water Effects Ratio Sampling Procedures

- 1. ESS arrive onsite.
- 2. ESS technicians set up peristaltic pump at sampling location Outfall 001.
- 3. At outfall 001 pH, Dissolved Oxygen, Conductivity, Flow, and Temperature measurements will be taken by an ESS technician. Of these parameters pH, Dissolved Oxygen, Flow, and Temperature are to be reported on the DMR.
- 4. Samples for TOC, TSS, Hardness, Alkalinity, DOC, Total Copper, Dissolved Copper, BOD, E. Coli, Orthophosphate, Total Phosphorus, TKN, NO2/NO3, and Total Nitrogen (Calculation of TKN+NO2/NO3) will be collected at outfall 001 in bottles provided by the analytical lab. Of these parameters BOD, TSS, E. Coli, Hardness, Orthophosphate, Total Phosphorus, TKN, NO2/NO3, and Total Nitrogen are to be reported on the DMR.
- 5. The technician will collect five (5) gallons of sample in a new cubitainer. This container will be preserved on ice in a cooler, then immediately transported to CBI.

The Contents of these Standard Operating Procedures (SOP's) are considered the property of Environmental Systems Service, Ltd. (ESS) and as such are confidential. No part of these procedures may be reproduced in any form, except as required for this specific project, without express written permission from ESS

EPA 2002.0 NOTE CONTROL TO CORY

Coastal Bioanalysts, Inc.
SOP ETS105G
Effective Date 6/30/07
Page 1 of 9
Controlled Copy#______

APPROVED:

Peter F. De Lisle, Ph.D., Technical Director

5/9/07

NOTE: This Standard Operating Procedure contains proprietary information and was developed for the sole use of Coastal Bioanalysts, Inc. and shall not be used by other organizations, or distributed to other parties, without written approval from Coastal Bioanalysts, Inc.

Distribution:

- 1. Quality Assurance office file (Original hardcopy with records of review and distribution)
- 2. Controlled copies to appropriate personnel/laboratories.

Distribution records (Original copy only):

Copy #	To: Name/Location	Distrib. Date	QAO Init.	Return Date	QAO Init.
1	Lab				

(Reviewed by)	(Date)	(Reviewed by)	(Date)
(Reviewed by)	(Date)	(Reviewed by)	(Date)
(Reviewed by)	(Date)	(Reviewed by)	(Date)

Methods must be reviewed at least annually by the quality assurance officer as part of the annual audit and managerial review. All affected staff reading a method for the first time should certify such in their personnel file.

Coastal Bioanalysts, Inc.
SOP ETS105G
Effective Date 6/30/07
Page 2 of 9
Controlled Copy#

TEST METHOD

EPA 2002.0

APPLICABLE MATRICES

Aqueous. This species cannot tolerate highly saline matrices (NaCl NOEC is 1 g/l, LOEC 2 g/l).

DETECTION LIMIT

Not applicable to toxicity.

SCOPE AND APPLICATION

- This test method measures the acute toxicity (LC50) of effluents to the freshwater cladoceran, Ceriodaphnia dubia, during 24-h to 48-h static or 48-h to 96-h static-renewal exposures. The method may also be used for determining the NOAEC without any modification of test design.
- This test is used as a definitive test consisting of five effluent concentrations and a control. Other designs, such
 as testing 100% sample from each of several stations plus a control and/or reference site may be used for
 testing surface waters, elutriates, etc.
- 3. This version of this SOP incorporates NELAP-required elements; the actual conduct of the test method is unchanged from the previous version of the SOP (ETS105E, 2/18/03).

SUMMARY OF TEST METHOD

- Daphnids (< 24-h old) are exposed to five different concentrations of an effluent during the 24-h or 48-h test. Pass/fail NOAEC tests use only a control and critical (e.g. 100%) effluent concentration. Multi-dilutional NOAEC tests are also often specified in permits.
- 2. Water quality is monitored daily. Tests may be static or static renewal and may be extended to 96 h duration with feeding and daily renewal or renewal at 48 h.
- 3. The number of live daphnids is also recorded daily. The test endpoint is survival.
- 4. Valid tests must have a minimum of 90% control survival. Refer to references below for additional information.

DEFINITIONS

Unless otherwise specified, the term effluent is used, for the sake of convenience, throughout this document to refer to effluents, ground waters, receiving waters, leachates, elutriates and other aqueous samples. See also DRS801 for additional definitions and terms.

INTERFERENCES

- Excessive headspace or insufficient chilling of samples during shipment and storage may result in toxicity being underestimated.
- 2. Improper handling may adversely affect both organism and sample condition.
- 3. Indigenous organisms which may be predators or pathogens of the test organisms, or are similar in appearance to the test organisms, may confound toxicity test results.
- 4. pH drift during testing may result in artifactual toxicity of pH-dependent toxicant (e.g. metals, ammonia). See SOP ETS204 for pH control methods. Note: If results are to be used for compliance purposes modifications for pH control require approval of the regulatory authority before implementation.

Coastal Bioanalysts, Inc.
SOP ETS105G
Effective Date 6/30/07
Page 3 of 9
Controlled Copy#

SAFETY, WASTE MANAGEMENT AND POLLUTION PREVENTION

- Collection and use of effluents in toxicity tests may pose risks to personal safety and health. Standard laboratory safety procedures must be adhered to at all times. Gloves must be worn at all times when handling samples.
- 2. Effluents discharged under NPDES permits may be poured directly down the drain. Except for pH adjustment (> 5), all reagents used in this test and supporting analyses (e.g. ammonia, alkalinity, etc.) do not require any pre-treatment prior to discharge to the sanitary sewer.

EQUIPMENT AND SUPPLIES

- Daphnids (< 24-h old), minimum of 150 (120 for test, 30 for "surrogate" chambers used for water quality measurements on day 1). Suppliers of brood stock (in order of preference):
 - a. Chesapeake Cultures (Elizabeth Wilkins 804-693-4046)
 - b. Aquatic BioSystems (Scott Kellman 800-331-5916)
 - c. Aquatic Research Organisms (800-927-1650)
- 2. YCT/Selenastrum
- 3. Temperature controlled (20 or 25 ± 1 °C) lab
- 4. Light table
- 5. Calibrated thermometers
- 6. Test chambers, (30) 30-ml portion cups, scintillation vials, or equivalent; all identical
- 7. HDPE Template (Fig. 1)
- 8. Funnel, with 60 um mesh
- 9. Calibrated flasks, 250-ml
- 10. Wash bottles containing DI H2O
- 11. Graduated cylinders 100-ml
- 12. Pipettes, pipette pumps and pipette bulbs
- 13. Tape, markers
- 14. Data sheets
- 15. Air lines, Pasteur pipettes and air stones

REAGENTS AND STANDARDS

- 1. DI H2O (ASTM Type I)
- 2. Moderately hard standard synthetic freshwater
- 3. KCl Sigma Ultra grade

SAMPLE COLLECTION, SHIPMENT, STORAGE AND PREPARATION

Refer to SOP ETS201 regarding sample collection and shipment; this is usually the responsibility of the client or a subcontractor.

Samples must be properly stored and prepped prior to use in toxicity tests. Incorrect sample storage or prep may invalidate the test and/or affect test results. Refer to SOP SPLS202 and ETS203 for sample receipt and prep procedures.

JERA 2002.0 NOTROLLED CORY

Coastal Bioanalysts, Inc.
SOP ETS105G
Effective Date 6/30/07
Page 4 of 9
Controlled Copy#

REQUIRED TEST CONDITIONS

TEST TYPE:

Static (24-h or 48-h), 48-h static-renewal, or 96-h static renewal (daily or at

48h). Permit specific. (Codes - Static: ACD Renewal: ACD - 48R, -96DR,

-96R1)

TEST CONCENTRATIONS (%):

Depends upon WET limit or other permit limit. Permit may specify a dilution series. Dilution factor for effluents is ≥ 0.5X unless otherwise specified by regulatory authority or special test objectives. Typical: 100,

50, 25, 12.5, 6.25%. May also be NOAEC pass-fail test.

DURATION:

24 or 48 ± 0.5 h; 96 ± 0.5 h with renewal daily or at 48-h

REPLICATES:

4 with 5 animals each (i.e. 20 animals/concentration; LC50 & NOAEC

tests)

RANDOMIZATION:

Test chambers oriented in randomized block design (DRS601)

TEST CHAMBERS:

Borosilicate glass scintillation vials, portion cups or equivalent

TEST VOLUME:

15 ml

TEMPERATURE:

25 ± 1° C or 20 ± 1° C (max-min 3° C maximum) (permit specific)

DILUTION WATER:

Standard synthetic freshwater (SFW), moderately hard¹

PHOTOPERIOD:

16 h light/8 h darkness

LIGHT INTENSITY:

10-20 uE/m²/s (50-100 ft-c) (ambient laboratory illumination)

AGE:

< 24-h old

D.O.:

≥4.0 mg/l, do not aerate test chambers

FEEDING:

Feed YCT/Selenastrum while holding (min. 2 hr) prior to test; not fed

during 48-h test. For 96-h test feed 0.2 ml YCT/Selenastrum

mixture/beaker 2 h prior to renewal at 48 h

CLEANING:

Not required. New (clean) chambers used for renewals.

SAMPLE HOLDING TIME:

36 h first use, may be used for renewal for up to 72 h after first use

TEST ACCEPTABILITY:

≥ 90% control survival; test must not be prematurely terminated

Dilution water may be of same hardness as the receiving water if known and approved by the regulatory authority. In some cases the receiving water may be used as the diluent (permit specific). Both a site-hardness SFW or receiving water control and a standard synthetic water control must be run.

EPA 2002.0

Coastal Bioanalysts, Inc.
SOP ETS105G
Effective Date 6/30/07
Page 5 of 9
Controlled Copy#______

IMPORTANT NOTES:

Recording data:

- 1. Use only permanent ink, waterproof pen for all logbook and bench sheet entries.
- 2. Fill in information requested on bench sheets completely, on a real-time basis.
- 3. Write neatly and legibly.
- 4. Corrections to bench sheet entries must be performed by placing a single line through the incorrect entry, writing the corrected entry as near its appropriate space as possible and initialing the correction. Write an explanation of the error if needed (footnote with number if necessary due to space limitations).

Control of contamination:

Samples may contain bacteria or fungi which are pathogenic to test organisms, especially fathead minnows. To decrease the possibility of control or between-test pathogen or toxicant contamination:

- 1. Gloves must be worn whenever hands come in contact with effluent, dilution water, test vessels, etc.
- 2. Use a dedicated pipette for transferring animals for each test and for controls (Renewal tests).
- 3. Obtain Day 0 water quality measurements by pouring water from beakers used for sample prep into dedicated 30-ml beakers. Collect final water quality measurements from surrogate beakers (see Fig. 1) on Day 1 and from test beakers on Day 2 (test termination). Be careful not to splash or aerate sample during collection of aliquots.
- 4. Change pH probe soak daily, using a new container.

PROCEDURE & METHOD PERFORMANCE

Refer to the work order database to determine client (permit) specific test requirements such as dilution series, duration, dilution water, species and dechlorination and pH adjustment procedures. See SOP ETS203 for guidance on preparing dilutions.

Test Set Up (Day 0)

- 1. The test should be set up as soon as practical within sample holding time (36 h).
- Test animals must all be from the same source and must have exhibited acceptable survival (≥ 90%) during the
 previous 24-h period. Unacceptable survival can be identified by examining the brood board for dead adults
 among the group(s) of organisms being used for production of test neonates (e.g. 6-day and 7-day olds).
- 3. Collecting test organisms:
 - a. Record vials with offspring on brood board and time checked periodically during the afternoon, night and/or morning before the test is set up so that a sufficient number of animals can be collected which are all released within the 24-h period prior to the start of the test (see CULS002).
 - b. Select daphnids for test of appropriate age (<24 h at test set up) from animals with good brood sizes (>10) which have produced a minimum of 3 broods. Only select animals which appear to be in good health, i.e. swimming, good color, size and shape.
 - c. Pool animals in a bowl, feed YCT + Selenastrum mixture (ca. 2 ml/150 ml) and place bowl in test lab at least 2 hr. prior to test start up.
- 4. Select and label a template board (Fig. 1). Record brood release data (i.e. age), acclimation temperature, template number, etc. on bench sheet.
- 5. Prepare effluent sample, approximately 200 ml for a single Ceriodaphnia, more if additional species are to be tested (exact amount will also depend on the dilution series used; 200 ml based on 0.5 x dilution series). Record sample pH, temperature, conductivity and D.O. Note: Sample pH should be 6.0-9.0; if not, additional treatments may need to be set up. See Sample Preparation SOP ETS203 for detailed instructions.
- 6. Check dilution water to ensure acceptable temperature, conductivity, pH and D.O. and record measurements. Check that hardness and alkalinity measurements for the batch of dilution water are within specifications (SOP

Coastal Bioanalysts, Inc. SOP ETS105G Effective Date 6/30/07 Page 6 of 9 Controlled Copy#

RWS001) and transcribe values and vat number from the batch sheet to the effluent/dilution water prep sheet for the test. Note: SFW diluent should not be used for more than two weeks. Note: If animals are cultured in a water different than that used for the test dilution water then a second control (culture water control) must be tested.

- Because of the small volumes of water (15 ml) used, the test chambers must be thermally equilibrated to the test temperature prior to use.
- 8. Pour the control (dilution water only), using a separate, labeled and calibrated 250-ml flask. Fill to the 100 ml mark. Pour approximately 15 ml into each of 5 test chambers, placing on appropriate block on template. The fifth replicate is placed in the 5th row of the template (Fig. 1); this chamber will receive the requisite number of test organisms (5) but will be sacrificed on day 1 for water quality measurements (i.e. these animals are not counted for LC50 determination). These "surrogate chambers" are used to prevent contamination from probes and damage to animals.
- 9. Pour excess (~25 ml) into a 30-ml beaker for initial (day 0) water quality measurements. Make sure the 30-ml beakers are clean, dry and equilibrated to test temperature before use.
- 10. Pour the remainder of the test by measuring out the amount of effluent needed (using graduated cylinder or pipette as appropriate) into a labeled, pre-calibrated 250-ml flask and diluting to 100 ml calibration mark with SFW. Alternatively, serially dilute 200 ml by pouring off 100 ml portions working in order of decreasing concentrations, Mix, pour into test chambers (excess into 30 ml beakers) and place chambers in appropriate wells on template as described above. Record time test poured.
- Immediately after pouring test solutions measure (in 30-ml beakers) and record, in order of increasing concentration:
 - a. Temperature, pH, conductivity and D.O. in one replicate of each concentration.
 - b. Total residual chlorine (TRC) in the highest concentration if present at sample check-in (also in dilution water if chlorine may be present; e.g. if a receiving water is used as diluent); record on effluent prep sheet.
 - c. Check that values make sense with respect to required test conditions, internal consistency and saturation values. Unusual values may indicate instrument drift since last calibration, measurement error, etc.
- 12. Transfer neonate daphnids, using a disposable pipette (watch daphnid exit pipette tip under water surface), one or two at a time, until there are 5 in each chamber. Only select animals which appear to be in good health, i.e. swimming, good color, size and shape; avoid undersize animals. Because the chambers are in random order and only one or two animals are placed in each chamber per time, this method insures healthy animals are randomly assigned to treatments. Verify that the correct number of animals are added to each chamber. Record time the daphnids are added, this is the time the test started. Animals should be added as soon as possible and no more than one hour from the time the test was poured.
- 13. Loosely cover chambers.
- 14. Check survival in the highest concentration approximately 1 h after test is set up. If mortality is observed at that time additional, lower, test concentrations may have to be set up (e.g. 3.13 and 1.56%). The number of additional concentrations should be based on the extent of mortality observed in lower test concentrations.
- Rinse 30 ml beakers well with delonized water and invert to dry (in test lab to insure thermal equilibration) for use the next day.
- 16. Prepare dilution water as needed to be used the following day (Renewal tests)

Daily Tasks (Day 1 (or 2 and 3))

Static Tests:

Measure and record, in order of increasing concentration, temperature, pH, and D.O. in the fifth (surrogate)
replicate of each concentration. Discard solution after measurement. Check that values make sense with
respect to previous day's values, concentrations, saturation values, required conditions, etc. Unusual values
may indicate instrument drift since last calibration, measurement error, etc.

Coastal Bioanalysts, Inc. SOP ETS105G Effective Date 6/30/07 Page 7 of 9 Controlled Copy#_____

Count and record the number of live daphnids. Record time, and initials. Remove any dead animals. NOTE:
 Although dead bodies may sometimes dissolve they usually don't. Verify live count + dead count = previous day total.

Static-Renewal Tests: (Note: If a 96-h test feed 0.2 ml YCT/Selenastrum concentrate/chamber 2 h before renewal at 48 h)

- 1. Prepare effluent sample as above.
- Check dilution water to ensure acceptable temperature, conductivity, pH and D.O. and record measurements.
 Check that hardness and alkalinity measurements for the batch of dilution water are within specifications (SOP RWS001) and transcribe values and vat number from the batch sheet to the effluent/dilution water prep sheet for the test.
- 3. Prepare each concentration separately, pour into a new set of test chambers (see sect. 8-10 above).
- 4. Collect "initial" (after renewal; on aliquots from prep flasks) measurements for each concentration.:
 - a. Temperature, pH, conductivity and D.O. in one replicate of each concentration.
 - b. Total residual chlorine (TRC) in the highest concentration and control if present at test initiation
 - c. Check that values make sense with respect to required test conditions, internal consistency and saturation values. Unusual values may indicate instrument drift since last calibration, measurement error, etc.
- 5. Count the number of survivors as daphnids are transferred (watch daphnids exit pipette tip, placed under water surface) into new solutions; verify (recount) after transfer. Place the chamber with daphnid and fresh solution back on the test board in the correct well. Be careful not to slosh water, causing the daphnids to stick to the wall of the vessel. Record time of transfer, number of survivors and initials.
- 6. Measure and record in old solutions "final" (before renewal) water quality parameters:
 - a. Temperature, pH, and D.O. in one replicate of each concentration.
 - b. Total residual chlorine (TRC) in the highest concentration and control if present at test initiation
 - c. Check that values make sense with respect to required test conditions, internal consistency and saturation values. Unusual values may indicate instrument drift since last calibration, measurement error, etc.

Highest test concentration with surviving animals in the period 24 h prior to measurement.

Termination of Test (48±0.5 h or 96±0.5 h)

- Count and record the number of live daphnids. Record time and initials. NOTE: Although dead bodies may sometimes dissolve they usually don't. Verify live count + dead count = previous day total.
- 2. Measure and record, before renewal, in order of increasing concentration:
 - a. Temperature, pH and D.O. in one replicate of each concentration.
 - b. Conductivity in the highest concentration and control.
 - c. Total residual chlorine (TRC) in the highest concentration and control if present at test initiation
 - d. Check that values make sense with respect to required test conditions, internal consistency and saturation values. Unusual values may indicate instrument drift since last calibration, measurement error, etc.
- Remove all test glassware to wash area. Discard any remaining sample. If sample needs to be saved for later chemical analysis, mark the container (red tape on cap) to indicate it is an archived sample.

CALCULATIONS AND DATA ANALYSIS

- 1. For all treatments and controls calculate the percent total survival.
- 2. The TAC and statistics are determined using performance of animals in the dilution water control; if a culture water or similar control is included its purpose is only to evaluate the appropriateness of the dilution water.
- 3. Refer to SOPs DRS101 and DRS102 for calculation and data analysis procedures:
 - a. For LC50 tests calculate the LC50 using appropriate method (SOP DRS101).

EPA 2002.0				
------------	--	--	--	--

Coastal Bioanalysts, Inc. SOP ETS105G Effective Date 6/30/07 Page 8 of 9 Controlled Copy#

- For pass-fail NOAEC tests evaluate the critical concentration using hypothesis testing (e.g. Student's ttest; SOP DRS102)
- For multi-dilutional NOAEC tests evaluate the critical concentration using hypothesis testing and calculate the LC50 if sufficient mortality occurs.

QUALITY CONTROL/DATA ASSESSMENT & ACCEPTANCE CRITERIA

- 1. Test acceptability criteria (TAC): Valid tests must have a minimum of 90% control survival. The TAC and statistics are determined using performance of animals in the dilution water control; if a culture water or similar control is included its purpose is only to evaluate the appropriateness of the dilution water. In addition, the test must be conducted in accordance with specified test conditions (temperature, test organism age, etc.; see below). Tests must not be terminated prematurely (i.e. + 0.5 h).
- 2. All supporting activities, such as preparation of dilution water, balance use and calibration, etc., must be performed in strict accordance with laboratory SOPs.
- A test may be deemed conditionally acceptable if there are minor deviations from specified conditions; determination of conditional acceptance based on degree of departure and objectives of test shall be made by the laboratory technical director and/or permitting authority and noted I the final report.
- 4. Reference toxicant tests must be performed each month the method is performed. If animals are purchased from an outside source a concurrent reference toxicant test must be conducted with the same batch of animals used in the effluent test. These tests are conducted similar to effluent tests except that a standard dilution series is tested using a concocted "100% effluent" composed of the reference toxicant (KCI) and laboratory dilution water (see below).

Reference Toxicant Test Concentrations/Dilutions:

- Prepare "100%" concentration by dissolving 572 mg of KCl (Sigma "Ultra" grade, current lot in use) in 500 ml of SFW dilution water. Record KCl "A" number on bench sheet. Use a calibrated flask, initially adding the KCl to ca. 400 ml of dilution water and then bringing to 500 ml volume after complete dissolution of the reference toxicant. Mix well.
- 2. Test the following concentrations of "100%" reference toxicant sample: 100%, 70%, 49%, 34.3%, 24.0%; i.e. a 0.7X dilution factor. These correspond to 1144, 800, 560, 392 and 275 mg/l KCI.
- 3. The test must be performed using the same procedures as for a static effluent test.

OUT-OF-CONTROL/UNACCEPTABLE DATA: CORRECTIVE ACTIONS AND CONTINGENCIES

Immediately notify the QA officer if data are out of control limits or unacceptable.

CALIBRATION AND STANDARDIZATION

Calibration is not applicable to toxicity testing. See QSS301 and QSS302 for precision estimation and standardization using reference toxicants and PT samples.

REFERENCES

See Quality Manual

JEPA 2002:0 NTROLLED COPY

Coastal Bioanalysts, Inc. SOP ETS105G Effective Date 6/30/07 Page 9 of 9 Controlled Copy#____

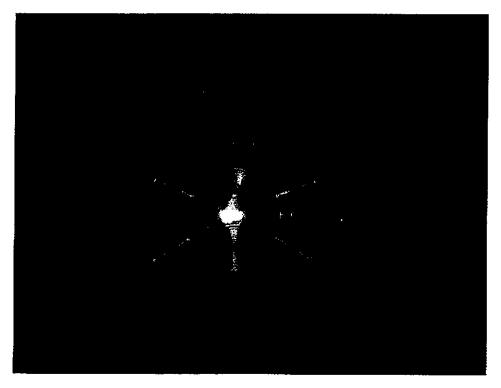
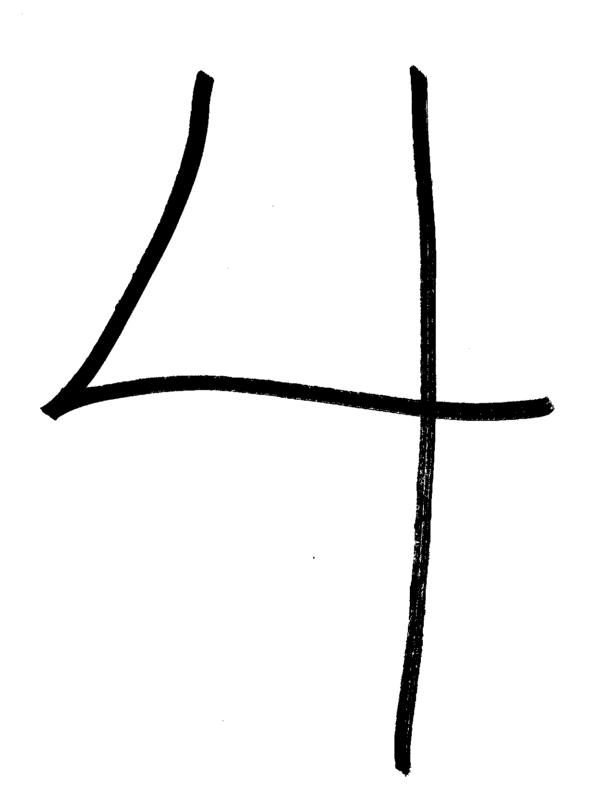



Fig. 1. Acute *Ceriodaphnia* test template. Rear row is for surrogate vessels for Day 1 water quality measurements.

Client: Environmental Systems Service, LTD.

Project ID: ESSL1014

Client Sample ID: Rappahannock WSA Outfall 001

Permit No: not given Sample Period: 7/5/10

REPORT: RAPPAHANNOCK WSA - COPPER WER (ROUND 1)

Submitted To:	Prepared By:
Ms. Angie Woodward	Coastal Bioanalysts, Inc.
Environmental Systems Service, LTD.	6400 Enterprise Court
218 North Main Street, P.O. Box 520	Gloucester, VA 23061
Culpeper, VA 22701	(804) 694-8285
	www.coastalbio.com
	Contact: Peter F. De Lisle, Technical Director

METHODS:

Procedures followed the previously submitted and approved study plan. Test methods are summarized below. Details regarding test conduct and data analysis are provided in attached bench sheets and printouts as applicable.

Test Organisms

Six and seven days prior to testing *Ceriodaphnia dubia* cultures were started in hard synthetic freshwater (SFW; 155 mg as CaCO₃) using neonate cladocerans. This hardness corresponded to that expected for the effluent. Cultures were fed YCT-Selenastrum (@ 3.5E⁷ cells/ml) at a rate of 0.1 ml of each per 15 ml of culture solution. Production and survival of animals raised in the hard water appeared similar to that of standard lab cultures maintained in moderately hard SFW.

Test animals were < 24 h old and selected from females that had produced 3 or more broods with a minimum of 15 offspring produced by the third brood. Animals were not fed during the test but were fed YCT-Selenastrum approximately 4.5 h prior to use in tests.

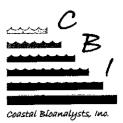
Test Solutions

Hard SFW was prepared according to the EPA recipe by dissolving ACS reagent-grade (or better) salts in high purity deionized water followed by aeration for at least 24 h. The water was then diluted to the desired hardness using deionized water. Deionized water was obtained from a Barnstead Nannopure Research Series system. The following treatment train was used for the feed water provided to the Barnstead system: well water > 10 um particle > softener > 1 um particle > activated carbon > reverse osmosis > mixed bed anion-cation exchange > 1 um particle > Barnstead Nannopure.

Effluent sample was stored at 3-4° C in the dark until used. Sample was maintained in collapsed Cubitainers with minimal headspace. Effluent was warmed to test temperature prior to use. Minimal (1 min) aeration was necessary to reduce oxygen to saturation concentration for range-finding and definitive tests.

Range-finding tests were used to determine appropriate concentrations for use in definitive toxicity tests. For the range-finding tests copper was added directly to site water and then serially diluted to prepare test solutions. "Site water" consisted of 100% undiluted effluent (based on stream and plant permitted design flow). The labwater test solutions were similarly prepared by serially diluting spiked hard SFW. Copper was added as a 1µg/µl (1 mg/ml) stock solution prepared by dissolving 67 mg of ACS reagent-grade CuCl₂·2H₂O (99.999+%; Aldrich lot #15726CH) in 25 ml high purity deionized water. The same stock was used for all tests.

For the definitive site water test, copper was added to the effluent (site water) and allowed to equilibrate for 3 h prior to adding animals. A 2 L volume of the highest concentration of spiked effluent was prepared by adding 1200 µl of copper stock solution. Thus the final concentration was 600 µg/l (assuming no background Cu). Serial dilutions (0.7X) of spiked site water were prepared by pouring off an 600 ml aliquot of the highest concentration and bringing



Client: Environmental Systems Service, LTD.

Project ID: ESSL1014

Client Sample ID: Rappahannock WSA Outfall 001

Permit No: not given Sample Period: 7/5/10

back to volume with un-spiked effluent. The 600 ml aliquots were added to labeled 1 L plastic beakers. The procedure was repeated to prepare seven beakers of solution of decreasing concentration. A control beaker received 600 ml of un-spiked effluent. The beakers were then allowed to stand for 3 h before being used in tests.

For the definitive lab water test 2 L of the highest concentration of hard SFW was prepared by spiking with $100 \,\mu$ l of copper stock solution (final concentration $50 \,\mu$ g/l). Serial dilutions (0.7X) of the spiked lab water were prepared as described above except using hard SFW as the diluent. The lab water solutions were then allowed to stand for 3 h before being used in tests.

Chemical Analyses

Samples of hard SFW and effluent were collected at the beginning of the test for TOC, TSS, and DOC analyses. Samples were stored at 3-4° C in the dark until shipped later with copper samples for analyses. Samples (approx. 200 ml) were collected from each treatment at the beginning of the test for total Cu. Total Cu samples were poured directly into sample containers. Copper samples from both the lab and site tests, as well as TOC and DOC samples, were sent to Reed and Associates (Newport News, VA) for analysis. TSS samples were sent to ESS for analysis. All sampling supplies were provided by the chemistry labs.

Measurements of dissolved oxygen, pH, temperature, conductivity, total residual chlorine, hardness, alkalinity and ammonia were performed using EPA methods. Instruments and titrations were calibrated using standards and/or titrants traceable to NIST where applicable.

Toxicity Tests

Toxicity test methods followed EPA Method 2002.0 (Acute Ceriodaphnia dubia). Toxicity tests were conducted using I oz. plastic shot glasses rather than borosilicate glass to decrease adsorption of Cu to vessel walls. Six replicates of 5 animals and 25 ml of solution were tested. In addition, two dummy replicates (rather than one) were included for water quality measurements (D.O., pH, temperature, conductivity) at T=24 h and T=48 h. These "chemistry controls" were loaded with test animals in the same manner as actual test chambers. Test chambers were arranged in a randomized block design prior to addition of animals and throughout the test.

Calculations

Following the EPA WER guidelines (EPA, 1994) four significant figures were retained in all calculations and endpoints to prevent round-off error. EC50s were calculated using the ToxCalc (version 5.0.23) software.

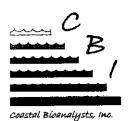
EC50s for lab and site water tests were calculated using nominal and measured total Cu. Because the probit method could not be used for both sets of tests, the Trimmed Spearman-Karber method was used for all computations of measured Cu toxicity.

EC50 values are typically normalized to a standard (test) hardness based on the WER guidance formula (see EPA 2001):

 $EC50_{Standard\ Hardness} = EC50_{Test\ Hardness} \ x \ (Standard\ Hardness/Test\ Hardness)^{0.9422}$

Because the hardness values of the dilution and site waters were identical, EC50s did not need to be normalized to a similar hardness. However, for WER calculations, the hardness-adjusted Species Mean Acute Value (SMAV) was based on the value calculated at the criteria reference hardness (CRH, 100 mg/l) and published in the WER guidance document (24.0 µg/l total; EPA2001). The following formula (from EPA 2001) was used to normalize the SMAV value to the test standard hardness of 132 mg/l:

 $SMAV_{Test\ Hardness} = SMAV_{CRH\ (100)} x (Test\ Hardness/100\ mg/l)^{0.9422}$



Client: Environmental Systems Service, LTD.

Project ID: ESSL1014

Client Sample ID: Rappahannock WSA Outfall 001

Permit No: not given Sample Period: 7/5/10

RESULTS:

Table 1. EC50 values (Total Cu)

Test Matrix	48-h EC50 (μg/l)	95% C.L.	Test Hardness (mg/l CaCO ₃)	Normalized [*] 48-h EC50 (μg/l)
Lab Water:	28.53	27.43-29.68	132	28.53
Site Water:	259.1	250.4-268.2	132	259.1

Normalized to a standard hardness of 132 mg/l (as CaCO₃).

Table 2. Calculated WER values.

Chemical Basis	WER Denominator Basis [*]	Normalized Site Water EC50 (μg/l)	Normalized Lab or SMAV EC50 (μg/l)	WER
Total	Lab Water	259.1	28.53	9.082
Copper	EPA 2001	259.1	32.22	8.042

NOTE: EPA (2001) states "If the hardness-normalized EC50 in laboratory water is less than the documented SMAV for the species (i.e. EPA 2001 value), then use the SMAV in place of the laboratory water EC50 in the dominator of the WER"

Table 3. Biological and Chemical Summary Data - Lab Water Test

Total Cu (μg/l)		Survival (%)		
Nominal	Measured	24-h	48-h	
0*	<2	100	100	
5.88	ND	100	100	
8.40	ND	100	100	
12.0	ND	100	96.7	
17.2	17	100	100	
24.5	25	100	90	
35.0	35	100	0	
50.0	ND	0	0	

*Lab Control (hard synthetic freshwater)

Project ID: ESSL1014

Client Sample ID: Rappahannock WSA Outfall 001

Permit No: not given Sample Period: 7/5/10

Table 4. Biological and Chemical Summary Data - Site Water Toxicity Tests

	Total Cu (µg/l)		Surviv	/al (%)
Nominal	Nominal + Background	Measured	24-h	48-h
0*	18	18	100	100
70.6	88.6	ND	100	100
101	119	ND	100	96.7
144	162	168	100	100
206	224	227	100	90
294	312	315	0	0
420	438	ND	0	0
600	618	ND	0	0

Site Control (100% un-spiked effluent)

Table 5. Test Set-up Information

Test Matrix	Definitive Test Start Date/Time End Date/Time	Organism Source	Brood Release Date/Time	Acclimation Temp.	Acclimation Water	Test Aerated?
Lab Water	7/7/10 1430	CBI	7/6/10 1640	25° C	Hard	No
	7/9/10 1420	Stock	7/7/10 1000		SFW	
Site Water	7/7/10 1430	CBI	7/6/09 1640	25° C	Hard	No
	7/9/09 1425	Stock	7/7/09 1000		SFW	

Table 6. Lab and Effluent Water Quality Data

Water Quality Parameter (Units)	Lab Water	Effluent
Arrival Temperature (°C)	N/A	1
Use Temperature (°C)	25	25
Conductivity (µS/cm)	482	625
pH (S.U.)	8.17	7.84
Dissolved Oxygen (mg/l)	8.2	8.2
Total Hardness (mg/l as CaCO ₃)	132	132
Alkalinity (mg/l as CaCO ₃)	73	91
DOC (mg/l)	< 0.5	3.5
TOC (mg/l)	1.0	6.2
TSS (mg/l)	1.1	1.8
Total Residual Chlorine (mg/l)	N/A	<q.l.< td=""></q.l.<>
Ammonia (mg/l NH ₃ -N)	<1.0	<1.0

Project ID: ESSL1014

Client Sample ID: Rappahannock WSA Outfall 001

Permit No: not given Sample Period: 7/5/10

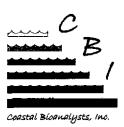


Table 7. Sample Aging/Use/Pretreatment

CBI Sample I.D.	Collection Date/Time	Date(s)/Time(s) Used in Range Tests	Date(s)/Time(s) Used in Definitive Tests	Sample Adjustments
ESSL1014-A	7/5/10 0635-1035	7/5/10 1550	7/7/10 1430 (lab), 1430 (site)	Aerated 1 min

Table 8. Lab Water Test - Water Quality (Mean/Std. Dev.)

Nominal Cu (µg/l):	Cont.	5.88	8.40	12.0	17.2	24,5	35.0	50.0
Temp.	25	25	25	25	25	25	25	25
(°C)	0	0	0	0	0	0	0	0
D.O.	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
(mg/l)	0	0	0	0.1	0.1	0	0	0
PH	8.04	8.05	8.06	8.05	8.03	8.03	8.02	8.02
(S.U.)	0.16	0.16	0.17	0.17	0.23	0.23	0.24	0.25

Table 9. Site Water Test - Water Quality (Mean/Std. Dev.)

Nominal Cu (µg/l):	Cont.	70.6	101	144	206	294	420	600
Temp.	25	25	25	25	25	25	25	25
(°C)	0	0	0	0	0	0	0	0
D.O.	8.2	8.2	8.2	8.2	8.1	8.1	8.1	8.2
(mg/l)	0	0.1	0.1	0.1	0.2	0.2	0.2	0.1
PH	8.23	8.23	8.23	8.23	8.23	8.22	8.21	8.22
(S.U.)	0.05	0.05	0.06	0.06	0.06	0.05	0.05	0.08

Table 10. Reference Toxicant Test Data (Reference Toxicant: KCl; Units: mg/l; CBI Stock Cultures)

Species-Method (Ref. Test Date)	Data Source	% Control Survival	48-h EC50	95% C.L./A.L. For EC50	RTT in Control?
C. dubia 2002.0	RTT	100	646	616-678	Yes
(7/1/10-7/3/10)	CC	100	581	501-661	

Note: RTT = Reference Toxicant Test, CC = Control Chart.

DISCUSSION:

A WER value of 8.042 is obtained based on the ratio of the site EC50 to the hardness-adjusted SMAV.

LITERATURE CITED:

EPA 1994. Interim Guidance on Determination and Use of Water-effects Ratios for Metals. February 1994. EPA-823-B-94-001.


Page 5 of 6 Report Pages Total No. Printouts/Bench Sheets/Documents Attached: 11

Project ID: ESSL1014

Client Sample ID: Rappahannock WSA Outfall 001

Permit No: not given Sample Period: 7/5/10

EPA 2001. Streamlined Water-Effect Ratio Procedure for Discharges of Copper. EPA-822-R-01-005. United States Environmental Protection Agency, Office of Water, March 2001.

GLOSSARY OF TERMS AND ABBREVIATIONS:

A.L. (Acceptance Limits): The results of a given reference toxicant test are compared to the control chart mean value ± 2 standard deviations. These limits approximate the 95% probability limits for the "true" reference toxicant value.

C.L. (Confidence Limits): These are the probability limits, based on the data set and statistical model employed, that the "true value" lies within the limits specified. Typically limits are based on 95% or 99% probabilities.

Control chart: A cumulative summary chart of results from QC tests with reference toxicants. The results of a given reference toxicant test are compared to the control chart mean value and 95% Acceptance Limits (A.L.) (mean + 2 standard deviations).

EC50/LC50: The concentration of sample or chemical, calculated from the data set using statistical models, causing a 50% reduction in test organism survival or mobilization. The lower the EC50/LC50, the more toxic the chemical or sample. Units are same as test concentration units. Note: The LC50 or EC50 value must always be associated with the duration of exposure.

N/A: Not applicable. N/D: Not determined or measured.

Q.L.: Quantitation Limit. Level, concentration, or quantity of a target variable (analyte) that can be reported at a specified degree of confidence.

Species Mean Acute Value (SMAV): Mean value of hardness-normalized EC50 values. Used in the criteria document for calculation of water quality criteria.

Water-Effect Ratio (WER): A criteria adjustment factor accounting for the effect of site-specific water characteristics on pollutant bioavailability and toxicity to aquatic life (from EPA 2001).

The results of analysis contained within this report relate only to the sample as received in the laboratory. This report shall not be reproduced except in full without written approval from the laboratory. Unless noted below, these test results meet all requirements of NELAP.

APPROVED:

Peter F. De Lisle, Ph.D. Technical Director

7/26/10 Date

Deviations from, additions to, or exclusions from the test method, non-standard conditions or data qualifiers and, as appropriate, a statement of compliance/non-compliance: **NONE**

	Treatment			
	I.D.	Day 0	Day 1	Day 2
Parameter	c	7.	 	240
Temp.	1	25	75	35
1		25	35	25
(°C)	2	25	15	25
	3	25	75	25
	4	25	25	25
	5	25	25	
	6	25	25	<u></u>
	7	25	25	
	С	7.87	8.17	8.49
рН	1	7.87	8.17	8.12
(S.U.)	2	287	8.19	8.12
	3	7-87	8.19	8.16
	4	7.87	819	8.13
	5	7.87	8.19	
•	6	2.85	8.19	<u> </u>
	7	7.84	8.19	
	С	8.2	8.2	8.3
D.O.	1	8.2	8.2	8.2
(mg/l)	2	8.2	8.7	8.3
	3	8.2	8.2	8.)
•	4	8,2	8.7	8.0
ļ	5	5. ¹	8.7	
i	6	8.2	82	
	7	8.2	8.2	_
	С	687	The state of the s	467
Conduct.	1	687	N. F. Walter	ARTER TOTAL
(Us/cm)	2	687		A herio L.
	3	687		Marine Com
	4	687		6.46
	5	686	To Pale 1	
	6	686		4 4 4 A A A A A A A A A A A A A A A A A
	7	687	629	
Replicate M	leas.:	s	S	s
lr	nitials:	10	P.B.	48
TRC (mg	y/l) in highest o		of test:	NA
				1 6 ± 1 = 1

Species: Ceriodaphnia dubia
Source: CBI stock cultures
Other:
Brood Date/time start: 7/4/15 1640 Release: Date /time end: 7/7/15 1000
Acclimation: Water: Mod. hard syn. FW
Other 155 W/L HD SFW
Temperature (°C): 25
Feeding: Prior to test: YCT/Selenastrum During test: Not Fed
Illumination: 16L:8D 10-20 uE/m²/s
Test chamber size:30 ml
Solution volume:15 mlml
Number of replicates/treatment: 6
Initial number of daphnids/replicate: 5
Template number: <u>// A</u>
Set up: Date (Day 0): 7/2/10
Time water added: //30
Time daphnids added: //30
Set up by (initials): Polso

Nominal Cu (µg/l)	I.D.	Day 0 Live	Day 1 Live	Day 2 Live	Final % Survival	Nominal Cu (µg/l)	I.D.	Day 0 Live	Day 1 Live	Day 2 Live	Final % Survival
	C-a	5	5	5			4-a	5	5	5	
Control	C-b	9	5	5		j	4-b	5	5	5	
	C-c	5-	5	5-			4-c	5	5	3	6.0
	C-d	5	5	5	(00)	206	4-d	5	5	4	90
	С-е	5	5	5-		1	4-e	5	5	5	<u> </u>
	C-f	5	5	5			4-f	5	5	5	
	1-a	5	5	5			5-a	5	0	ಲ	
	1-b	.s~	5	5			5-b	5	Ö	۵	
	1-c	5	5	5		بنمما	5-c	5	0	Δ	
70.6	1-d	5	5_	5	100 294	5-d	5	0	(d)		
	1-e	5	5	5			5-e	5	0	۵_]
	1-f	5	S	5			5-f	چ	0	Δ	
	2-a	r	5_	5			6-a	5	0	십	
	2 - b	5	5	5			6-b	5	0	Δ	!
	2-c	5	5	5	967	1,0 m	6-c	5	0	Ò	6
101	2-d	2	5	4	الم	420	6-d	5	0	۵_	
	2-e	5-	5	5			6-e	5_	0	0	!
	2-f	5-	_ ح	5			6-f	5	0	0	
	3-a	5	5	5		l	7-a	5	0	0	
	3-b	5_	5	5^			7-b	5	0	0	<u></u>
144	3-c	5	5.	5	100	600	7-c	5	0	Q_	O
	3-d	5	5	5-	•		7-d	5-	0	0	
	3-e	5	5	5			7-e	5	0	۵	
	3-f	5-	.5	5			7-f	5_	0	0	
						ľ	Initials:	CG	Ph	CB	Took
						Cour	nt Time:	1436	1040	1425	Test end time

eer Rev by: AG	Date: 7/26/10	_	
0.7 x Dilhan 600 ml ench di		L highest co.	reij pour 4
Highest cone = 120	اری دا در داد امر در داد	tock in 2L	efferent.

Page 2 of 2 Test ID: 6554 12 14 ACD-WER Site Water Lab Water

Chart Data	7/7/0040	14.20	Test ID:	ESSL1014		111a 198	t-48 Hr Su Sample II		RAPPAHA	ANINO	K WSV	
Start Date: End Date:	7/7/2010 7/9/2010		Lab ID:	CBI			Sample T		SITE WA		K WOM	
Sample Date:	11812010	14,20		EPAA 91-E	EDA Acute		Test Spec		CD-Cerio		dubia	
Comments:			r lotocol.			,	1031 Oper	olos.	OD-Odilo	аартта	000,0	
Conc-ugiL	1	2	3	4	5	6						
CONTROL		1.0000		1.0000	1.0000	1.0000						
70.6		1.0000		1.0000	1.0000	1,0000			NOMIN	IAL	رن	
101		1.0000		0.8000	1,0000	1.0000						
144	1.0000	1.0000		1.0000	1.0000	1.0000						
206	1.0000	1.0000		0.8000	1.0000	1.0000						
294	0.0000	0.0000		0.0000	0.0000	0.0000						
420		0.0000		0.0000	0.0000	0.0000						
600				0.0000	0.0000	0.0000						
			T:	ransform: /	Arcsin So	uare Ro	ot				Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	•			Resp	Number
CONTROL		1.0000		1.3453	1.3453	0.000	6				0	30
70.6		1.0000		1.3453	1.3453	0.000					0	30
101	0.9667	0.9667		1.1071	1.3453	7.446					1	30
144		1.0000		1.3453	1.3453	0.000					0	30
206		0.9000		0.8861	1.3453	15.715	6				3	30
294				0.2255	0.2255	0.000	6				30	30
420		0.0000		0.2255	0.2255	0.000	6				30	30
600		0.0000		0.2255	0.2255	0.000	6				30	30
Auxiliary Tes	ts						Statistic		Critical		Skew	Kurt
Shapiro-Wilk's	Test indic	ates non-	normal dis	stribution (p	<≃ 0.01)		0.68654		0.9		-2.2143	7.33602
Equality of var	iance cani	not be cor	nfirmed									
Parameter	Value	SE	05% Fide	۷ ucial Limits		Likeliho Control	od-Probit		P-value	Mu	Sigma	Iter
Slope		20.7364		64,2413		0			5.3E-149			7
Intercept			-146.81			•	000.0 12	11.0.00	0.02 7.0	2.0000		·
TSCR	20.021	10.0101	110.01	100.110			1.0 _T				•••	
Point	Probits	ug/L	95% Fldu	icial Limits	,		-				7	
EC01	2.674	140,668	-				0.9				1 1	
EC05	3.355	162.371					0.8 -					
EC10	3.718	175.278					0.7				1 1	
EC15	3.964	184.561					-				1 1	
EC20		192.288					<u>9</u> 0.6				!	
EC25		199.174					Ö 0.5				1 1	
EC40		217.641					in 4				<i>!</i>	
EC50		229.565					ě 0.4			j		
	5.253	242.142					0.3 -				1	
EC60												
EC60 EC75	5.674	264.593					121			- 1	ļ	
EC60 EC75 EC80	5.674 5.842	264.593 274.069					0.2					
EC60 EC75 EC80 EC85	5.674 5.842 6.036	264.593 274.069 285.543					0.2 - 0.1 -				•	
EC60 EC75 EC80	5.674 5.842 6.036	264.593 274.069					4	· · · · · · · · · · · · · · · · · · ·			•	

1000

10

Dose ug/L

100

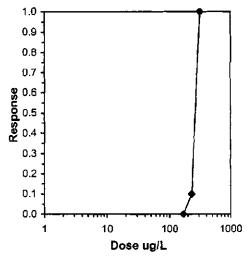
EC95 6.645 324.566 EC99 7.326 374.641 Significant heterogeneity detected (p = 5.31E-149)

				Acute	Ceriodapi	inia Tes	t-48 Hr Survival	
Start Date: End Date:	7/7/2010 7/9/2010			ESSL1014 CBI	IA		Sample ID: Sample Type:	MEASURED CU SITE WATER
Sample Date: Comments:			Protocol:	EPAA 91-I	EPA Acute		Test Species:	CD-Ceriodaphnia dubia
Conc-ug/L	1	2	3	4	5	6		
CONTROL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		-
168	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
227	1.0000	1.0000	0.6000	0.8000	1.0000	1.0000		
315	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

		_	Tra	ansform:	Arcsin Sc	uare Root	Number	Total	
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N_	Resp N	Number
CONTROL	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6	0	30
168	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6	0	30
227	0.9000	0.9000	1.2291	0.8861	1.3453	15.715	6	3	30
315	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	6	30	30

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.67587	0.858	-2.0659 6.68443
Foundity of variance cannot be confirmed			

Equality of variance cannot be confirmed


EC50

Trim Level

Trimmed Spearman-Karber

0.0% 259.13 250.36 268.21 5.0% 261.62 250.66 273.05 10.0% 262.58 256.83 268.46 20.0% 262.58 256.83 268.46 Auto-0.0% 259.13 250.36 268.21

95% CL

COASTAL BIOANALYSTS, INC EFFECTIVE DATE: 2/9/09

Parameter	Treatment I.D.	Day 0	Day 1	Day 2	Species: Ceriodaphnia dubia Source: CBI stock cultures
r djajisetei	Ċ	25	25	J 5-	_
Temp.	1	25	25	25	Other:
(°C)	2	25	25	24	Brood Date/time start: 7
	3	25	25	25	Release: Date /time end:
	4	26	75	25	· —
	5	V	25	25	Acclimation: Water: Mod
	6	25	25	25	Othe
	7	Z	75		Temperature
	С	8.17	3.26	8.25	
рH	1	8.17	8-24	8,25	Feeding: Prior to test: During test:
(S.U.)	2	8.17	8 28	8.25-	
	3	8.17	8.28	8.25	Illumination: 16L:8D 10-20 uE.
	4	8.17	8,28	8.25	Test chamber size:30 n
	5	8.17	8.24	8-23	Solution volume:15 ml
	6	817	826	8.27	
	7	8.16	8.28		Number of replicates/treatme
	С	8.2	8.2	8. 2	Initial number of daphnids/re
D.O.	1	8.2	8.2	8.)	Template number: NA
(mg/l)	2	8-2	8.2	8.,	
	3	8.2	84	8.0	Set up: Date (Day 0):
	4	8. L	9.1	7.4	Time water added:
	5	8,6	8.2	7.9	Time daphnids added
	6 7	8.2	8.1	2.4	
<u> </u>		8,2	8.(Set up by (initials):
Conduct	С	481		498	
Conduct.	1 2	482		A STATE OF THE STA	
(Us/cm)	3	482			
	4	482			
	5	782		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	6	482			
	7	481		203	
Replicate M		482 s	182 3	·	
			S	s s	
	itials: /I) in highest o	f n	l PB	EA !	

Source: CBI stock cultures
Other:
Brood Date/time start: 7(613 1643
Brood Date/time start: <u>און און און און און און און און און און </u>
Acclimation: Water: Mod. hard syn. FW
Other 155 my/L HO SA
Temperature (°C): 25
Feeding: Prior to test: YCT/Selenastrum During test: Not Fed
Illumination: 16L:8D 10-20 uE/m²/s
Test chamber size:30 ml
Solution volume:15 mlml
Number of replicates/treatment: 6
Initial number of daphnids/replicate: 5
Template number:
Set up: Date (Day 0): 7/7/(>
Time water added: 1139
Time daphnids added: 1439
Set up by (initials): <u>fol</u> GS

Nominal Cu	l.D.	Day 0 Live	Day 1 Live	Day 2 Lîve	Final % Survival	Nominal Cu (μg/l)	i.D.	Day 0 Live	Day 1 Live	Day 2 Live	Final % Survival	
(µg/I)	C-a				30141491	(pgn)	4-a	-	<u></u>	5	00.77727	
Control	C-b	5	5	5	ı		4-b		_5	l		
COMBO	C-c	5	5_	5			4-c	5	5	5		1
		5	5	5	-5	17.2	4-d	5	5_	5	 1	
	C-d	5	5	5	100	17.		5	5_	5	100	
	С-е	5	5_	5			4-e	2	5	5		
	C-f	5	<u>5</u>	5^_			4-f	<u>س</u>	5	5		ļ
	1-a	5-	5_	5		,	5-a	2	3	5	,	ļ
	1-b	5	5_	5^			5-b	<u>6</u> -	5	5	0.0	
5.88	1-c	5	5_	5	120	<u> </u>	5-c	5	5	4	90	l
•	1-d	5	5	5~_	10	<i>μ</i>	5-d	ر ا	3	4	430	1/9/10
	1-e	5	5	5			5-e	پ ^_	5	5-	יגי	
	1-f	5	5	5^_	ı		5-f	5	5	ij	_	l
	2-a	5	5	5-			6-a	5	5	۵		1
	2-b	5	3	ζ-			6-b	5	5	D		
0.143	2-c	5	5_	5	100	_	6-c	5		0		1
8.40	2-d	5	5	5	,	35.0	6-d	5-	5 5	0	0	!
	2 -e	5	3	5			6-e	5	5	C.	1	!
	2-f	ر-	5	5			6-f	5	5	0	'	•
	3-a	5	5	5^			7-a	5	0	۵		
	3-b	5-	5	~	_		7-b	<u> </u>	6	0		1
	3-c	5	5	5	ا (ا	50.0	7-c	5	0	۵	()	
12.0	3-d	5	5	5	96.7	30.	7-d	5	0	0		
	3-е	2	5	5	-		7-e	5-	0	8		1
	3-f	5	5	840			7-f	8	0	0		1
	1	<u> </u>			FLACID		Initials:	C B	PB	GB		J
				240	가기(#	Cou	nt Time:	1436	1030	1420	Test end	

Peer Rev by: AC Date: 712610
0.7 x Dilution factor (2L highest commentation) pour off 600 ml each dilution)
Highest conc = 100 ml Cu stock in 2 L SAW.
Page 2 of 2 Test ID: ESSLIDIN ACD-WER Site Water Lab Water

				Acute	Ceriodap	hnia Tes	t-48 Hr Surviva	
	7/7/2010 1		Test ID:		IA .	· ·	Sample ID:	RAPPAHANNOCK WSA 001
End Date:	7/9/2010 1	14:20		ÇBI			Sample Type:	LAB WATER
Sample Date:			Protocoi:	EPAA 91-	EPA Acute	€	Test Species:	CD-Ceríodaphnia dubia
Comments:								
Conc-ug/L	1	2	_ 3	4	5	6		
CONTROL	1.0000	1.0000	1.0000	1.0000	1.0000		-	
5.88	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		NOMINAL CU
8.4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		· Ponto Co
12	1.0000	1.0000	1.0000	1.0000	1.0000	0.8000		
17.2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
24.5	1.0000	1.0000	0.8000	0.8000	1.0000	0.8000		
35	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

			Tr	ansform:	Arcsin Sc	uare Roof	t	 Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	 Resp	Number
CONTROL	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	5	0	25
5.88	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6	0	30
8.4	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6	0	30
12	0.9667	0.9667	1.3056	1.1071	1.3453	7.446	6	1	30
17.2	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6	0	30
24.5	0.9000	0.9000	1.2262	1.1071	1.3453	10.637	6	3	30
35	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	6	30	30
50	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	6	30	30

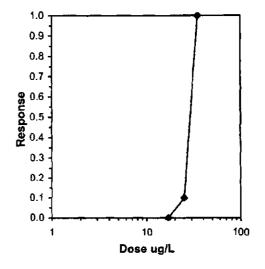
Auxiliary Tests
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01) Statistic Critical Skew Kurt 0.74678 0.91 -0.964 3.13231

Equality of va	andired Call	iot de coi	minica	Maxit	num Likeliho	od-Probit					
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq		P-value	Mu	Sigma	lter
Slope	10.9385	21.012	-43.075	64.9516	0	722.674	11.0705	6.1E-154	1.43648	0.09142	8
Intercept	-10.713	30.2573	-88.492	67.0659							
TSCR						1.0 т				,	
Point	Probits	ug/L	95% Fidu	cial Limits		0.9			ſ		
EC01	2.674	16.742				0.9 1			- 1	ļ	
EC05	3.355	19.3246				0.8			- 1		
EC10	3.718	20.8604				0.7			- 1		
EC15	3.964	21.965				4			- 1	}	
EC20	4.158	22.8845				Response 0.5 0.4			- 1	- 1	
EC25	4.326	23.7039				5 0.5 T			- 1	1	
EC40	4.747	25.9013				<u> </u>				ĺ	
EC50·	5.000	27.3201				2 0.4 }			- 1		
EC60	5.253	28.8166				0.3			- 1		
EC75	5.674	31.4879				0.2			- 1		
EC80	5.842	32.6154				0.2			- 1		
EC85	6.036	33.9807				0.1 -			/+		
EC90	6.282	35.7801				0.0		•	4		
EC95	6.645	38.6238				0.0 4		10	3 (1 ')	100	
E000	7 200	44 5047						10		100	

EC99 7.326 44.5817
Significant heterogeneity detected (p = 6.14E-154)

Dose ug/L

		_		Acute	Ceriodapi	hnia Tes	t-48 Hr Survival	
Start Date:	7/7/2010	14:30	Test ID:	ESSL1014	IB		Sample ID:	MEASURED CU
End Date:	7/9/2010	14:20	Lab ID:	CBI			Sample Type:	LAB WATER
Sample Date:			Protocol:	EPAA 91-I	EPA Acute	3	Test Species:	CD-Cerlodaphnia dubia
Comments:								
Conc-ug/L	1	2	3	4	5	6		
CONTROL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	i	<u> </u>
17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
25	1.0000	1.0000	0.8000	0.8000	1.0000	0.8000		
35	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		


		•	Tr	ansform:	Arcsin Sc	guare Roo	Number Total	
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp Number
CONTROL	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6	0 30
17	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6	0 30
25	0.9000	0.9000	1.2262	1.1071	1.3453	10.637	6	3 30
35	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	6	30 30

Auxiliary Tests	Statistic	Critical	Skew Kur	<u>t</u>
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.76213	0.858	3.3E-15 0.42	5
Equality of variance connet be confirmed				

Equality of variance cannot be confirmed

Trimmed Spearman-Karber

Trim Level	EC50	95%	CL	
0.0%	28.531	27.425	29.683	
5.0%	28.892	27.490	30.366	
10.0%	29.033	28.379	29.701	
20.0%	29.033	28.379	29.701	
Auto-0.0%	28.531	27.425	29.683	

EFFLUENT, STREAM & DILUTION WATER CHARACTERISTICS FORM ETF2031WER

COASTAL BIOANALYSTS, INC **EFFECTIVE DATE: 2/9/09**

Source	Effluent	Stre	eam	Site	د و سرپس
Tot. Res. Chlorine (mg/l)	LQL	N	/A	\\	Δ
Hardness (mg/l CaCO ₃)	132		,		
Alkalinity (mg/l CaCO ₃)	91				
NH ₃ -N (mg/l)	41.0				
Color/Appearance ²	C				
Obvious Odor?	Λb				
Date/Initials	2/c (a				T

Test	Range-finding	Definitive
Temperature (°C)	25-	ئ ک _ھ
Conductivity (uS/cm)	530	482
D.O. (mg/l)	8,2	8,2
pH (\$,U.)	8,24	8.17
Hardness (mg/l CaCO ₃)	154	132
Alkalinity (mg/l CaCO ₃)	90	73
NH₃-N (mg/l)	N.D.	410
Date/Initials	8(7)5. (13)	212 4

Test	Range-finding	Defir	nitive		"A" Bottle #328
Source	Site (Mix) > Refficult lair	Effluent	Stream	m !	Bal. Calib. Chk: 100 mg wt: (66.4
Prep Temperature (°C)	25	25	N	A	Stock = 67 mg/ 15 r
Conductivity (uS/cm)	475	425			Prepared by: <u>িচ</u> Date: <u>৬/৭/</u> -গ
D.O. (mg/l) After Warming	9,3	9.1			RANGE-FINDING TEST:
Aeration Time (min)	1.0	1.0			RANGE-FINDING TEST: Highest Concentration = 30
Adjusted D.O.	8.5	€.a		T	
Final pH (S.U.)	8,84	7.84			Prepared by: 10 Date: 7/x
Tot. Res. Chlorine (mg/l) ³	M.D.	NJ. D			DEFINITIVE TEST: /20
Sample Filtered (60 um)?	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Λtb			DEFINITIVE TEST: /²c Highest Concentration =
Date/Time	715 1595	708 1445			ml Efflu
Initials	UM	CB			Prepared by: <u>//></u> Date:_ <u>7/2//</u>

_ul in ıter PGD 7/1/15 _ut in nt

'As total compound. As toxic component = _____ | _______

Preparation of test solutions (definitive test)

Test Procedure	Site water	Lab Water
Dilution factor:	0.7x	0.7x
Volume diluted spiked effluent or SFW added to each conc. prep flask:	600 mg	600-1
Time diluted spiked effluent or SFW added:	1130	//3 >
Volume stream water added to each flask of spiked effluent:	NIA	
Time stream water added to each flask of spiked effluent:	NA	"我们的是我们在我们的

NOTES:

To	tal	residua	l chlorine	measured	after samp	le prep on	ly i	f present ir	ı initi	al samp	le cha	racterizat	tion
----	-----	---------	------------	----------	------------	------------	------	--------------	---------	---------	--------	------------	------

Peer Rev by AC	Date 7/26/10	PROJECT I.D	ESS (101	ý WER
-			(First 8 cha	racters of Laboratory Sample ID)

²C-Clear, O-Opaque, T-Turbid, S-Solids (SI-Slight, M-Moderate, H-Heavy), Y-Yellow, B-Brown, BI-Black, G-Green

CERIODAPNIA DUBIA WER RANGE-FINDING TEST FORM ETF1051WER RFT

Lab Water RFT							
Nominal		Day 0	Day 1	Day 2	Final %		
Cu ug/l],D	Live	Live	Live	Survival		
Lab	C-A	5 -	5	\\ \f	1		
Control	C-B	5	5	.5	100		
,	1-A	5	5	5			
1.57	1-B	5	ς-	5	100		
2,3	2-A	5	5	5			
3,13	2-B	5-	5	5	123		
6.25	3-A	ς	5-	5			
6. "	3-B	5	رو	5' 5'	100		
126	4-A	5	5	5			
10,3	4-B	5	5-	5	120		
12.5	5-A	5-	3	2	1		
2,	5-B	5	3	ચ	40		
50	6-A	2	G	6	ی		
, , , , , , , , , , , , , , , , , , ,	6-B	5	0	۵			
100	7-A	5-	Q	۵	ی		
	7-B	5	٥	٥			
	Initials:		CV	CB			
Count	Time:	1550	1135	0910	*Test End Time		

Site Water RFT							
Nominal Cu ug/f	I.D.	Day 0 Live	Day 1 Live	Day 2 Live	Final % Survival		
Site	S-A	5	5	5	1 .		
Control	S-B	5'	5	5-	(23		
50	1-A	5-	5	5	100		
12.5	1-B	5-	5	5_			
25	2-A	5	5	5	_		
}	2 -B	5-	5-	5	100		
50	3-A	5-	5-	5~_			
30	3-B	5	5	5	03		
100	4-A	5-	5-1	5			
,00	4-B	5-	<u>5</u>	5	100		
2	5-A	5	5-	5	a		
200	5-B	5	4	4_	45		
400	6-A	5^_	. 0	10			
) 	6-B	Ś	0	0	O		
800	7-A	5	۵	۵	0		
003	7-B	5	0	0			
	Initials:		CB	GB			
Count	Time:	1550	1130	0915	*Test End Time		

COASTAL BIOANALYSTS, INC EFFECTIVE DATE: 2/9/09

Species: Ceriodaphnia dubia								
Source: CBI stock cultures								
Other:								
Brood Date/ti: Release:	me start:	7/4/	12 16	20				
Release: Date /ti	ime end:	215/	0 10	22				
Acclimation:		Mod. h	ard svn. l	FW				
		Other(150 mg/	J SFW				
			rature (°					
Feeding:		test: Yo		astrum				
Illumination: 16	L:8D 10-	20 uE/m²	//s					
Test chamber s	ize:	_30 ml						
Solution volum	e:	15 ml		ml				
Number of repl		atment:	2					
Initial number of	of daphni	ids/replic	ate: 5					
Template numb	er:_ <i>^//</i>	4	•					
Set up: Date (E	ay 0):	7/5/10	<u> </u>					
	ater add							
Time daphnids added: 1555								
Set up by (initials): Po/ 675								
End of Test	Lab W		Site W					
Water Qual.	Control	1	Control	I				
Temp (°C)	25	25-	800	25				
pH D.O. (mg/l)	8.14	5.12	8.00	7.84				
Cond. (uS)		7.4	7.5	776				
p Cond. (us)	540	406	212	 1.3 				

Mort=Lowest concentration with 100% mortality at end of test

Note: Stru herders is lower (NI34 mg/L) for definition that then RFT. There for will strik w/ 50 ppls at historic conc. do, less water definitive took. PPD 7/7/10

ESSCIDIY-A

ESS WO# 92134 ESS PO# 11664

BIOASSAY CHAIN OF CUSTODY

TOXICITY ASSESMENT

WATER EFFECTS RATIO STUDY

Customer R	ippahannock W45A VPDE	ES Permit #		
	SAMPLE INFO			
Outfall/Locat	ion Outfall Ool			
Collection:	Date 7/5/10	Time 2635 - 1035		
	Sample volume 5501			
	pH (SU) 7.45 Temp (°C)			
	Dissolved O ₂ (mg/l)	Conductivity (indicate u	mit) <u>0,535 a.</u> S	
	Analysis (Date/Time) 7/5/10 (2,000		
Outfall/Locat	ion			
Collection:				
	Sample volume			
	pH (SU) Temp (°C) _	Chlorine (mg/l)	
	Dissolved O ₂ (mg/l)	Conductivity (indicate a	ınit)	
	Analysis (Date/Time)			
Sampler's Sig	gnature Augustus Su	<u> </u>	_ -	_
Samples Rece	eived by: Pan 3 km co nod to Bioassay Lab: Hand Deliver	Intitials <u>PO</u> Date 7/	5/10 Time 1440	190
Received at C	to Coastal Lab by: Coastal Lab by: Of sample upon receipt @ Coastal Lab	Date	Time	-

Project ID: ESSL1020

Client Sample ID: Rappahannock WSA Outfall 001

Permit No: not given Sample Period: 8/2/10

REPORT: RAPPAHANNOCK WSA - COPPER WER (ROUND 2)

Submitted To:	Prepared By:
Ms. Angie Woodward	Coastal Bioanalysts, Inc.
Environmental Systems Service, LTD.	6400 Enterprise Court
218 North Main Street, P.O. Box 520	Gloucester, VA 23061
Culpeper, VA 22701	(804) 694-8285
	www.coastalbio.com
	Contact: Peter F. De Lisle, Technical Director

METHODS:

Procedures followed the previously submitted and approved study plan. Test methods are summarized below. Details regarding test conduct and data analysis are provided in attached bench sheets and printouts as applicable.

Test Organisms

Six and seven days prior to testing *Ceriodaphnia dubia* cultures were started in hard synthetic freshwater (SFW; 161-200 mg as CaCO₃) using neonate cladocerans. This hardness corresponded to that expected for the effluent. Cultures were fed YCT-Selenastrum (@ 3.5E⁷ cells/ml) at a rate of 0.1 ml of each per 15 ml of culture solution. Production and survival of animals raised in the hard water appeared similar to that of standard lab cultures maintained in moderately hard SFW.

Test animals were < 24 h old and selected from females that had produced 3 or more broods with a minimum of 15 offspring produced by the third brood. Animals were not fed during the test but were fed YCT-Selenastrum approximately 5 h prior to use in tests.

Test Solutions

Hard SFW was prepared according to the EPA recipe by dissolving ACS reagent-grade (or better) salts in high purity deionized water followed by aeration for at least 24 h. Deionized water was obtained from a Barnstead Nannopure Research Series system. The following treatment train was used for the feed water provided to the Barnstead system: well water > 10 um particle > softener > 1 um particle > activated carbon > reverse osmosis > mixed bed anion-cation exchange > 1 um particle > Barnstead Nannopure.

Effluent sample was stored at 3-4° C in the dark until used. Sample was maintained in collapsed Cubitainers with minimal headspace. Effluent was warmed to test temperature prior to use. Minimal (0.5 min) aeration was necessary to reduce oxygen to saturation concentration for range-finding and definitive tests.

Range-finding tests were used to determine appropriate concentrations for use in definitive toxicity tests. For the range-finding tests copper was added directly to site water and then serially diluted to prepare test solutions. "Site water" consisted of 100% undiluted effluent (based on stream and plant permitted design flow). The labwater test solutions were similarly prepared by serially diluting spiked hard SFW. Copper was added as a $1\mu g/\mu l$ (1 mg/ml) stock solution prepared by dissolving 67 mg of ACS reagent-grade CuCl₂·2H₂O (99.999+%; Aldrich lot #15726CH) in 25 ml high purity deionized water. The same stock was used for all tests.

For the definitive site water test, copper was added to the effluent (site water) and allowed to equilibrate for 3 h prior to adding animals. A 2 L volume of the highest concentration of spiked effluent was prepared by adding 1200 μ l of copper stock solution. Thus the final concentration was 600 μ g/l (assuming no background Cu). Serial dilutions (0.7X) of spiked site water were prepared by pouring off an 600 ml aliquot of the highest concentration and bringing back to volume with un-spiked effluent. The 600 ml aliquots were added to labeled 1 L plastic beakers. The

Page 1 of 6 Report Pages
Total No. Printouts/Bench Sheets/Documents Attached: 11

Project ID: ESSL1020

Client Sample ID: Rappahannock WSA Outfall 001

Permit No: not given Sample Period: 8/2/10

procedure was repeated to prepare seven beakers of solution of decreasing concentration. A control beaker received 600 ml of un-spiked effluent. The beakers were then allowed to stand for 3 h before being used in tests.

For the definitive lab water test 2 L of the highest concentration of hard SFW was prepared by spiking with $100 \,\mu$ l of copper stock solution (final concentration $50 \,\mu$ g/l). Serial dilutions (0.7X) of the spiked lab water were prepared as described above except using hard SFW as the diluent. The lab water solutions were then allowed to stand for 3 h before being used in tests.

Chemical Analyses

Samples of hard SFW and effluent were collected at the beginning of the test for TOC, TSS, and DOC analyses. Samples were stored at 3-4° C in the dark until shipped later with copper samples for analyses. Samples (approx. 200 ml) were collected from each treatment at the beginning of the test for total Cu. Total Cu samples were poured directly into sample containers. Copper samples from both the lab and site tests, as well as TOC and DOC samples, were sent to Reed and Associates (Newport News, VA) for analysis. TSS samples were sent to ESS for analysis. All sampling supplies were provided by the chemistry labs.

Measurements of dissolved oxygen, pH, temperature, conductivity, total residual chlorine, hardness, alkalinity and ammonia were performed using EPA methods. Instruments and titrations were calibrated using standards and/or titrants traceable to NIST where applicable.

Toxicity Tests

Toxicity test methods followed EPA Method 2002.0 (Acute Ceriodaphnia dubia). Toxicity tests were conducted using 1 oz. plastic shot glasses rather than borosilicate glass to decrease adsorption of Cu to vessel walls. Six replicates of 5 animals and 25 ml of solution were tested. In addition, two dummy replicates (rather than one) were included for water quality measurements (D.O., pH, temperature, conductivity) at T=24 h and T=48 h. These "chemistry controls" were loaded with test animals in the same manner as actual test chambers. Test chambers were arranged in a randomized block design prior to addition of animals and throughout the test.

Calculations

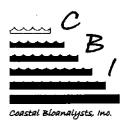
Following the EPA WER guidelines (EPA, 1994) four significant figures were retained in all calculations and endpoints to prevent round-off error. EC50s were calculated using the ToxCalc (version 5.0.23) software.

EC50s for lab and site water tests were calculated using nominal and measured total Cu. Because the probit method could not be used for both sets of tests, the Trimmed Spearman-Karber method was used for all computations of measured Cu toxicity.

EC50 values were normalized to a standard (test) hardness of 200 mg/l based on the WER guidance formula (see EPA 2001):

EC50_{Standard Hardness} = EC50_{Test Hardness} x (Standard Hardness/Test Hardness)^{0.9422}

For WER calculations, the hardness-adjusted Species Mean Acute Value (SMAV) was based on the value calculated at the criteria reference hardness (CRH, 100 mg/l) and published in the WER guidance document (24.0 µg/l total; EPA2001). The following formula (from EPA 2001) was used to normalize the SMAV value to the test standard hardness of 200 mg/l:


 $SMAV_{Test Hardness} = SMAV_{CRH (100)} \times (Test Hardness/100 mg/l)^{0.9422}$

Project ID: ESSL1020

Client Sample ID: Rappahannock WSA Outfall 001

Permit No: not given Sample Period: 8/2/10

RESULTS:

Table 1. EC50 values (Total Cu)

Test Matrix	48-h EC50 (μg/l)	95% C.L.	Test Hardness (mg/l CaCO ₃)	Normalized* 48-h EC50 (µg/l)
Lab Water:	23.12	21.62-24.73	198	23.34
Site Water:	278.0	264.4-292.2	200	278.0

Normalized to a standard hardness of 132 mg/l (as CaCO₃).

Table 2. Calculated WER values.

Chemical Basis	WER Denominator Basis*	Normalized Site Water EC50 (μg/l)	Normalized Lab or SMAV EC50 (μg/l)	WER
Total	Lab Water	278.0	23.34	11.91
Copper	EPA 2001	278.0	46.11	6.029

NOTE: EPA (2001) states "If the hardness-normalized EC50 in laboratory water is less than the documented SMAV for the species (i.e. EPA 2001 value), then use the SMAV in place of the laboratory water EC50 in the dominator of the WER"

Table 3. Biological and Chemical Summary Data - Lab Water Test

Total C	Cu (µg/l)	Survival (%)		
Nominal	Measured	24-h	48-h	
0,	<2	100	100	
5.88	ND	100	100	
8.40	ND	100	100	
12.0	13	100	100	
17.2	18	100	93.3	
24.5	25	100	26.7	
35.0	35.0 34		6.67	
50.0	50.0 50		0	

*Lab Control (hard synthetic freshwater)

Project ID: ESSL1020

Client Sample ID: Rappahannock WSA Outfall 001

Permit No: not given Sample Period: 8/2/10

Table 4. Biological and Chemical Summary Data - Site Water Toxicity Tests

	Total Cu (μg/l)	Surviv	/al (%)	
Nominal	Nominal + Background	Measured	24-h	48-h
0*	17	17	100	100
70.6	87.6	ND	100	100
101	118	ND	100	100
144	161	ND	100	100
206	223	220	100	100
294	311	302	93.3	23.3
420	437	632**	0	0
600	617	597	0	0

^{*}Site Control (100% un-spiked effluent)

Table 5. Test Set-up Information

Test Matrix	Definitive Test Start Date/Time End Date/Time	Organism Source	Brood Release Date/Time	Acclimation Temp.	Acclimation Water	Test Aerated?
Lab Water	8/4/10 1530	CBI	8/3/10 1700	25° C	Hard	No
	8/6/10 1550	Stock	8/4/10 1020		SFW	
Site Water	8/4/10 1545	CBI	8/3/10 1700	25° C	Hard	No
	8/6/10 1600	Stock	8/4/10 1020		SFW	

Table 6. Lab and Effluent Water Quality Data

Water Quality Parameter (Units)	Lab Water	Effluent
Arrival Temperature (°C)	N/A	4
Use Temperature (°C)	25	25
Conductivity (µS/cm)	695	818
pH (S.U.)	8.34	7.73
Dissolved Oxygen (mg/l)	8.2	8.2
Total Hardness (mg/l as CaCO ₃)	198	200
Alkalinity (mg/l as CaCO ₃)	129	103
DOC (mg/l)	0.8	6.7
TOC (mg/l)	0.8	6.7
TSS (mg/l)	<1.0	3.4
Total Residual Chlorine (mg/l)	N/A	<q.l.< td=""></q.l.<>
Ammonia (mg/l NH ₃ -N)	<1.0	<1.0

Page 4 of 6 Report Pages
Total No. Printouts/Bench Sheets/Documents Attached: 11

^{*}Because test treatments were prepared as serial dilutions of the highest concentration (600 ug/l), this value is not possible as all lower dilutions would also be much greater than the nominal values. The value appears to be due to an analytical error or contaminated sample bottle. The nominal value of 420 ug/l was used for this treatment to calculate a conservative (i.e. lower) site LC50.

Project ID: ESSL1020

Client Sample ID: Rappahannock WSA Outfall 001

Permit No: not given Sample Period: 8/2/10

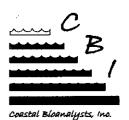


Table 7. Sample Aging/Use/Pretreatment

CBI Sample I.D.	Collection Date/Time	Date(s)/Time(s) Used in Range Tests	Date(s)/Time(s) Used in Definitive Tests	Sample Adjustments
ESSL1020-A	8/2/10 0710-1110	8/2/10 1620	8/4/10 1530 (lab),	Aerated 0-0.5
			1545 (site)	min

Table 8. Lab Water Test - Water Quality (Mean/Std. Dev.)

Nominal Cu (μg/l):	Cont.	5.88	8.40	12.0	17.2	24.5	35.0	50.0
Temp.	25	25	25	25	25	25	25	25
(°C)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
D.O.	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
(mg/l)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
PH	8.39	8.39	8.39	8.38	8.38	8.38	8.39	8.39
(S.U.)	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07

Table 9. Site Water Test - Water Quality (Mean/Std. Dev.)

Nominal Cu (μg/l):	Cont.	70.6	101	144	206	294	420	600
Temp.	25	25	25	25	25	25	25	25
(°C)	0	0	0	0	0	0	0	0
D.O.	8.1	8.1	8.1	8.1	8.1	8.2	8.2	8.2
(mg/l)	0.2	0.2	0.2	0.1	0.1	0.1	0	0
PH	8.07	8.11	8.13	8.13	8.15	8.14	8.10	8.09
(S.U.)	0.18	0.16	0.16	0.16	0.17	0.19	0.25	0.26

Table 10. Reference Toxicant Test Data (Reference Toxicant: KCl; Units: mg/l; CBI Stock Cultures)

Species-Method (Ref. Test Date)	Data Source	% Control Survival	48-h EC50	95% C.L./A.L. For EC50	RTT in Control?
C. dubia 2002.0	RTT	100	583	532-638	Yes
(8/1/10-8/3/10)	CC	100	586	501-670	

Note: RTT = Reference Toxicant Test, CC = Control Chart.

DISCUSSION:

A WER value of 6.029 is obtained based on the ratio of the site EC50 to the hardness-adjusted SMAV. Based on the geometric mean of the first WER study (8.042) and the present study (6.029) a final WER value for total copper of 6.963 is obtained.

Project ID: ESSL1020

Client Sample ID: Rappahannock WSA Outfall 001

Permit No: not given Sample Period: 8/2/10

LITERATURE CITED:

EPA 1994. Interim Guidance on Determination and Use of Water-effects Ratios for Metals. February 1994. EPA-823-B-94-001.

EPA 2001. Streamlined Water-Effect Ratio Procedure for Discharges of Copper. EPA-822-R-01-005. United States Environmental Protection Agency, Office of Water, March 2001.

GLOSSARY OF TERMS AND ABBREVIATIONS:

A.L. (Acceptance Limits): The results of a given reference toxicant test are compared to the control chart mean value ± 2 standard deviations. These limits approximate the 95% probability limits for the "true" reference toxicant value.

C.L. (Confidence Limits): These are the probability limits, based on the data set and statistical model employed, that the "true value" lies within the limits specified. Typically limits are based on 95% or 99% probabilities.

Control chart: A cumulative summary chart of results from QC tests with reference toxicants. The results of a given reference toxicant test are compared to the control chart mean value and 95% Acceptance Limits (A.L.) (mean ± 2 standard deviations).

EC50/LC50: The concentration of sample or chemical, calculated from the data set using statistical models, causing a 50% reduction in test organism survival or mobilization. The lower the EC50/LC50, the more toxic the chemical or sample. Units are same as test concentration units. Note: The LC50 or EC50 value must always be associated with the duration of exposure.

N/A: Not applicable. N/D: Not determined or measured.

Q.L.: Quantitation Limit. Level, concentration, or quantity of a target variable (analyte) that can be reported at a specified degree of confidence.

Species Mean Acute Value (SMAV): Mean value of hardness-normalized EC50 values. Used in the criteria document for calculation of water quality criteria.

Water-Effect Ratio (WER): A criteria adjustment factor accounting for the effect of site-specific water characteristics on pollutant bioavailability and toxicity to aquatic life (from EPA 2001).

The results of analysis contained within this report relate only to the sample as received in the laboratory. This report shall not be reproduced except in full without written approval from the laboratory. Unless noted below, these test results meet all requirements of NELAP.

APPROVED:

Peter F. De Lisle, Ph.D.

Technical Director

11/9/10 Date

Deviations from, additions to, or exclusions from the test method, non-standard conditions or data qualifiers and, as appropriate, a statement of compliance/non-compliance: NONE

Ceriodaphnia dubia

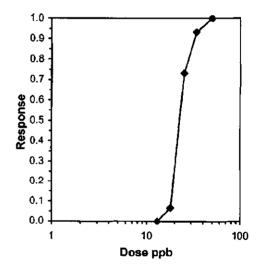
	Treatment I.D.	Day 0	Day 1	Day 2	Species:
Parameter		, .			Source: C
_	С	25	24	25	٥
Temp.	1	25	Qu_	25	l
(°C)	2	25	24	25	Brood D Release:
	3	25	24	3 (D (No.cubo.
	4	<u>ar</u>	24	25	Acclimatio
	5	25	24	25	Accimiant
	6	25	24	<u>as</u>	
	7	24	24	25	
	C	8.31	8-45	8.40	
pН	1	831	8-45	8.40	Feeding:
(S.U.)	2	8.31	8.45	8.40	
	3	8.3)	845	8.38	illuminatio
	4	R-31	8.45	8.38	Test cham
	5	8.31	8.45	8-38	Calutian
	6	8.31	8.45	8.41	Solution v
	7	8.31	8.45	8.42	Number of
	С	8.2	8.2	8.0	Initial num
D.O.	1	8.2	8.2	8.0	
(mg/l)	2	6.3	8.1	8.1	. Template
i	3	8.2	8.1	8.)	Set up: D:
	4	8.2	8.1	8.1	Ti
	5	8.2	8.i	8.0	
	6	8.2	8.1	8.0	Tí
	7	8.	1.8	8.0	Se
	С	491		644	
Conduct.	1	4960	700		
(Us/cm)	2	498		Distance of	Om
	3	698			- /r
1	4	692	- h		
1	5	701	Mar Calmany		
	6	692			
	7	642	1 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	203	
Replicate M	eas.:	S	S	S	
le le	nitials:	40	AG	CA	
TRC (mg	/I) in highest o	conc. at end of	test: .	NA	
					ļ

Source: CBI stock cultures
Other:
Brood Date/time start: 8/3/10 120以 Release: Date /time end: 8/4/10 1034
Acclimation: Water: Mod. hard syn. FW L\ - Other_Z_UO mg/L_S/W
Temperature (°C): 2 5
Feeding: Prior to test: YCT/Selenastrum During test: Not Fed
illumination: 16L:8D 10-20 uE/m²/s
Test chamber size:30 ml
Solution volume:15 mlml
Number of replicates/treatment: 6
Initial number of daphnids/replicate: 5
. Template number:
Set up: Date (Day 0): 8/4// >
Time water added: 1450
Time daphnids added: 15 30
Set up by (initials): <u>PP/よ</u> の
Omix beauto cups

Nominal Cu (µg/l)	I.D.	Day 0 Live	Day 1 Live	Day 2 Live	Final % Survival	Nominal Cu (µg/l)	I.D.	Day 0 Live	Day 1 Live	Day 2 Live	Final % Survival
	C-a	5	5	5			4-a	5	5	4	
Control	C-b	5	5	5		ĺ	4-b	5	5 :		-
	C-c	3	5	~		17.2	4-c	5	16	5	1
	C-q	6	5	5	100	1 ''	4-d	5	5	-	93
	С-е	5	· ~	5	100		4-e	5	5	+	1
	C-f	5	5	<u> </u>			4-f	-	5	5	1
	1-a	5	5	5		-	5-a	5	5	1	
	1-b	5	5	5			5-b	5	5	i	1
~ 44	1-c	5	5	5	p	245	5-c	5	5	ಎ	1 -
8.88	1-d	5	5	5	100	L 71.3	5-d	5	5	0	27
	1-e _.	5	5	5] [5-е	5	5	3]
	1-f	5	5	5		5-f	5_	5	I	1	
	2-a	4	5	5			6-a	5	5	3	
	2-b	5	5	ς			6-b	5	5	۵	
8.47	2-c	5	ما	<u>ن</u>		35,0	6-c	5	_5	0	
0, ,	2-d	5	5	5	106	23,0	6-d	5	5	0	フ
	2-e	5	5	5			6-e	5	5	A)	
	2-f	5	5	5			6-f	5	5	O	
	3-a	5	5	۶			7-a	5	5	٥	
	3-b	5	5	5		_	7-b	5	5	۵	
12.0	3-c	5	5	5	100	20.0	7-c	5	5	٥	0
12,	3-d	5	5	5	1		7-d	5	5	٥	
	3-e 3-f	5	5	ς^			7-e	4	5	(2)	
	3-1	5	5	5			7-f	5	5	۵	
							Initials:	CB	AG_	CB	
					i	Cour	nt Time:	1530	1020	1550	Test end

Peer Rev by:_	1B	Date: <i>を</i> /,	0/16		
0.7x	diluhen	12hr (2L	highest conc	ردهم ز.	· 46 600
ml	each	dishon)			
И;д	host con	c = 100 ml	Cu Stoch in	2 L	hard spar

Page 2 of 2	Test ID:	ESSLIOZO	ACD-WER	Site Water	Lab Water_	V	
					_		-


				Acute	Ceriodap	hnia Tes	t-48 Hr Survival	
Start Date:	8/4/2010 1	5:30	Test ID:	ESSL1020)A		Sample ID:	RAPPAHANNOCK WSA 001
End Date:	8/6/2010 1	5:50	Lab ID:	CBI			Sample Type:	MEASURED CU-LAB WATER
Sample Date:			Protocol:	EPAA 91-	EPA Acute	•	Test Species:	CD-Ceriodaphnia dubia
Comments:								
Conc-ppb	1	2	3	4	5	6		<u> </u>
CONTROL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		<u>-</u>
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
18	0.8000	0.8000	1.0000	1.0000	1.0000	1.0000		
25	0.2000	0.2000	0.4000	0.0000	0.6000	0.2000		
34	0.4000	0.0000	0.0000	0.0000	0.0000	0.0000		
50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		•

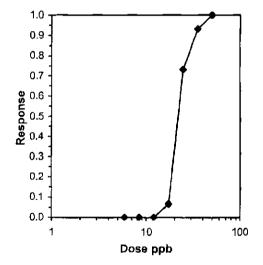
Transform: Arcsin Square Root									Number	Total
Conc-ppb	Mean	N-Mean	Mean	Min	Max	CV%	N		Resp	Number
CONTROL	1.0000	1.0000	1.3453	1,3453	1.3453	0.000	6		0	30
13	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6		0	30
18	0.9333	0.9333	1.2659	1.1071	1.3453	9.714	6		2	30
25	0.2667	0.2667	0.5312	0.2255	0.8861	42.649	6	.,	22	30
34	0.0667	0.0667	0.3020	0.2255	0.6847	62.066	6		28	30
50	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	6		30	30

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.85411	0.9	1.06152 3.33396
Equality of variance cannot be confirmed			

Trimmed Spearman-Karber

Trim Leve!	EC50	95%	CL
0.0%	23.121	21.617	24.729
5.0%	22.900	21.429	24.471
10.0%	22.693	21.228	24.258
20.0%	22.371	20.841	24.013
Auto-0.0%		21.617	24.729

 				Acute	Ceriodap	hnia Tes	t-48 Hr Survival	
Start Date: End Date: Sample Date: Comments:	te: 8/4/2010 15:30 Test ID: ESSL1020L e: 8/6/2010 15:50 Lab ID: CBI Date: Protocol: EPAA 91-EPA Acute		9	Sample ID: Sample Type: Test Species:	RAPPAHANNOCK WSA 001 LAB WATER CD-Ceriodaphnia dubia			
Conc-ppb	1	2	3	4	5	6		
CONTROL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
5.88	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
8.4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
17.2	0.8000	0.8000	1.0000	1.0000	1.0000	1.0000		
24.5	0.2000	0.2000	0.4000	0.0000	0.6000	0.2000		
35	0.4000	0.0000	0.0000	0.0000	0.0000	0.0000		
50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		


			Tra	ansform:	Arcsin So	quare Root		Number To	otal
Conc-ppb	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp Nur	mber_
CONTROL	1.0000	1.0000	1,3453	1.3453	1.3453	0.000	6	0	30
5.88	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6	0	30
8.4	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6	0	30
12	1.0000	1.0000	1,3453	1.3453	1.3453	0.000	6	0	30
17.2	0.9333	0.9333	1.2659	1.1071	1.3453	9.714	6	2	30
24.5	0.2667	0.2667	0.5312	0.2255	0.8861	42.649	6	22	30
35	0.0667	0.0667	0.3020	0.2255	0.6847	62.066	6	28	30
50	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	6	30	30

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.77486	0.922	1.23693 5.64348
Faralta afronia de la continua d			

Equality of variance cannot be confirmed

Trimmed Spearman-Karber

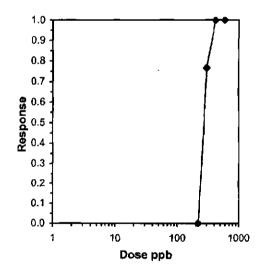
Trim Level	EC50	95%	CL	
0.0%	22.567	20.968	24.288	-
5.0%	22.361	20.776	24.067	
10.0%	22.123	20.536	23.832	
20.0%	21.747	20.113	23.515	
Auto-0.0%	22.567	20.968	24.288	

Danier	Treatment I.D.	Day 0	Day 1	Day 2	Species: Ceriodaphnia dubia
Parameter	С	25	25	25	Source: CBI stock cultures
Temp.	1	25	25	25	Other:
(°C)	2	25	25	25	Brood Date/time start: //
	3	25	25	25	Release:
	4	35	25	25	Date /time end: 16/1
	5	25	25	25	Acclimation: Water: Mod
	6	25	25		Othe
	7	25	25	~	
	С	2.82	8.20	81.13	Temperature
ρН	1	7.43	8.22	8.18	Feeding: Prior to test:
(S.U.)	2	2.95	8.24	16,8	During test: (
	3	7.45	8.24	821	Illumination: 16L:8D 10-20 uE
	4	795	3,25	8.24	Test chamber size:30 n
	5	2.90	8,25	8.24	Solution volume:15 ml
	6	2.42	8.27		<u> </u>
	7	2.40	8.27	~	Number of replicates/treatme
	С	8.2	8.1	2.9	initial number of daphnids/rep
D.O.	1	8.7	8.1	7.9	Template number: PA
(mg/l)	2	8.7	8,2	2.4	
	3	8.9	ያ.ጋ	8.7	Set up: Date (Day 0): <u> </u>
	<u>4</u> 5	82	6.8	8.0	Time water added:
	6	8.2	8.2	8.)	Time daphnids added
	7	89	8.2	_	
***	C	8.2	8.2	_	Set up by (initials):/
Conduct.	1	824		6 35	
(Us/cm)	2	831	20 VA 12 12 10 24	MONEY AND	
(Od/OH)	3	832	/ 1.34C # Cave # 1	\$ 20 C S	O mixing between
	4	833	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		•
	5	832		0 776	•
	6	832			
ľ	7	835	a regular		
Replicate M	eas.:	8 8	S	s	
Ir	ıltlals:	ርტ	AG	CB	
TRC (mg	/l) in highest o		f test:	V1V	
				, —,	

	Source: CBI stock cultures
	Other:
_	Brood Date/time start: \$\(\frac{\partial}{3}\)/10 1200
	Release: 8/4/い /ひむひ
	Acclimation: Water: Mod. hard syn. FW
	Temperature (°C):
_	Feeding: Prior to test: YCT/Selenastrum During test: Not Fed
	Illumination: 16L:8D 10-20 uE/m²/s
	Test chamber size:30 ml
	Solution volume:15 mlml
	Number of replicates/treatment: 6
	initial number of daphnids/replicate: 5
	Template number: PA
	Set up: Date (Day 0):_8/9//Li
	Time water added: 14 55 @
	Time daphnids added: 15 45
	Set up by (initials): <u>アッパが</u>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O mixing beckers & cups
ı	

Nominal Cu (µg/l)	I.D.	Day 0 Live	Day 1 Live	Day 2 Live	Final % Survival	Nominal Cu (µg/l)	I.D.	Day 0 Live	Day 1	Day 2 Live	Final % Survival											
	C-a	-	5	<u>~</u>	:		4-a	5	5	5												
Control	C-b	5	5	5			4-b	5	5	5												
	C-c	5	-	~	100 1	-1-	4-c	5	5	5	1											
	C-d	5	5	5		206	4-d	5-	5	5-	100											
	С-е	5	5	5			4-e	2-	5	5	1											
	C-f	†	5	5		i	4-f	5	5	53	1											
-	1-a	5	5	۲_			5-a	5	5	3												
	1-b	5	5	5		!	5-b	5	3	0												
	1-c	5	5	5	100 294	100	100	100	294	5-c	5	5	-									
70.6	1-d	5	5	5					100	100	100		5	5	1 1	23						
,	1-e	5	5	7.														5-e	5	5	3	
	1-1	5	5	5		5-f	5	5	1	<i>'</i>												
_	2-a	5	5	5			6-a	5-	Ö	0												
	2-b	5	5	5			6 - b	5	0	0												
	2-c	5	5	5-					6-c	5	0	Δ	0									
101	2-d	5	5	5	100	420	6-d	5	0	0												
•	2-е	5	ζ	5]					 							6-e	5	0	0	
	2-f	5	ζ	۲-			6-f	5	0	۵												
	3-a	5	5	<		_	7-a	5	0	Δ												
	3-b	5	ζ .	5.			7-b	5	0	0												
	3-c	5	5	5	(00	60\$	7-c	5	0	Δ	0											
144	3-d	5	5	5		6"	7-d	5	0	()												
	3-e	5	5	5			7-e	5	0	Ŏ												
	3-f	5	5	5			7-f	5	0	D												
							Initials:	GB	AG	CB												
						Cou	nt Time:	1545		1400	'Test end time											

Peer Rev by:	PB	Date: 8 /10 /10	1		
0.7 H	x d: luhan 600 ml e	factor (2 ach dilat	L highest han)	concentration; po	رر
-				in 2L affluent	
Page 2 of 2	Test ID: <u>E 55 (/ 0</u>	2cıacd	-WER Site Wa	terLab Water	


				Acute	Ceriodap	hnia Tes	t-48 Hr Survival	
Start Date:	8/4/2010 1	5:45	Test ID:	ESSL1020)B		Sample ID:	RAPPAHANNOCK WSA 001
End Date:	8/6/2010 1	16:00	Lab ID:	CBI			Sample Type:	MEASURED CU-SITE WATER
Sample Date: Comments:			Protocol:	EPAA 91-	EPA Acute	9 .	Test Species:	CD-Ceriodaphnia dubia
Сопс-ррв	1	2	3	4	5	6		
CONTROL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
220	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
302	0.4000	0.0000	0.2000	0.2000	0.4000	0.2000		
420	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
597	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

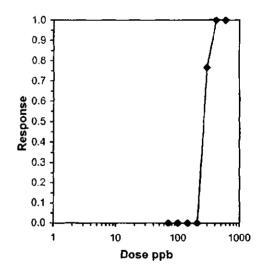
-	Transform: Arcsin Square Root								Number	Total
Conc-ppb	Mean	N-Mean	Mean	Min	Max	CV%	N	<u> </u>	Resp	Number
CONTROL	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6		0	30
220	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6		0	30
302	0.2333	0.2333	0.4976	0.2255	0.6847	34.515	6		23	30
420	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	6		30	30
597	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	6		30	30

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.65927	0.858	-0.5877 5.22416
Equality of variance cannot be confirmed			

Trimmed Spearman-Karber

Trim_Level EC50 95% CL 0.0% 277.96 264.42 292.19 290.97 5.0% 275.59 261.03 10.0% 273.51 289.58 258.34 20.0% 270.74 256.30 285.99 Auto-0.0% 277.96 264.42 292.19

				Acute	Ceriodap	hnia Tes	t-48 Hr Survival	
Start Date:	8/4/2010 1	15:45	Test ID:	ESSL1020	S		Sample ID:	RAPPAHANNOCK WSA 001
End Date:	8/6/2010 1	16:00	Lab ID:	CBI			Sample Type:	SITE WATER
Sample Date:			Protocol:	EPAA 91-I	EPA Acute	•	Test Species:	CD-Ceriodaphnia dubia
Comments:								
Conc-ppb	_1	2	3	4	5	6		
CONTROL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
70.6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
1 01	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
144	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
206	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
294	0.4000	0.0000	0.2000	0.2000	0.4000	0.2000		
420	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
600	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		


			Tra	ansform:	Arcsin So	quare Root	l		Number	Total
Conc-ppb	Mean	N-Mean	Mean	Min	Max	CV%	N	•	Resp	Number
CONTROL	1.0000	1.0000	1.3453	1.3453	1,3453	0.000	6		0	30
70.6	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6		0	30
101	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6		0	30
144	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6		0	30
206	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	6		0	30
294	0.2333	0.2333	0.4976	0.2255	0.6847	34.515	6		23	30
420	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	6		30	30
600	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	6		30	30

Auxillary Tests S	Statistic	<u>Critical</u>	Skew	Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.47395	0.912	-0.7937	11.8813

Equality of variance cannot be confirmed

Trimmed	Spearman-Karber
---------	-----------------

Trim Level	_EC50	95%	CL	
0.0%	267.42	253.11	282.55	
5.0%	265.00	249.61	281.35	
10.0%	262.88	246.82	279.98	
20.0%	260.04	244.64	276.42	
Auto-0.0%	267.42	253.11	282.55	

CERIODAPNIA DUBIA WER RANGE-FINDING TEST FORM ETF1051WER RFT

		Lab W	ater RFT		
Nominal Cu ug/i	l.D.	Day 0 Live	Day 1 Live	Day 2 Live	Final % Survival
Lab	C-A	5	3-	5	}
Control	С-В		5	33	100
102	1-A	5		5	
1.57	1-B	ç~	5-5	5	100
3.13	2-A	5	5	5	
	2-B	(5	5	100
	3-A	5	5	5	
4.25	3-B	5-	5	5	100
10 ~	4-A	5	5	5	
12.5	4-B	1	5	Ÿ	90
25	5-A	5	1	0	
9.2	5-B	5	3	1	10
50	6-A		۵	0	
20	6-B	5	۵	ਹ	0
100	7-A	5 5 5	0	0	
	7-B	5	Ö	Ġ	0_
In	itials:	CB	CB	GB	
Count	Time:	14,20	0905	09 16	*Test End Time

		Site W	ater RFT		
Nominal Cu ug/l	I.D.	Day 0 Live	Day 1 Live	Day 2 Live	Final % Survival
Site	S-A	5	5	5	
Control	S-B		5	5	100
	1-A	5	5~	5	
12.5	1-B	5	5	5	100
	2-A	5	5	5	
25	2-B	5	5	5	100
50	3-A	5	5	5-	
50	3-B	5	5	5	100
101)	4-A	5	5	ς-	
טטי	4-B	5	5	5	100
0 ~ 0	5-A	<u>₹</u>	ಎ	ವ	
200	5-B	5	3	2	ク
1,	6-A	5	0	2	
400	6-B	5	0	2	0
C) (10)	7-A	5	0	4	0
ಕ್ಟಿಯ	7-B	5	a	ట	
1	itials:	CB	LB	69	
Count	Time:	1425	414	4915	*Test End Time

COASTAL BIOANALYSTS, INC EFFECTIVE DATE: 2/9/09

Species:	Cerioda	aphnia d	dubia		
Source: CBI stock cultures					
0	ther:				
Brood D	ate/tim	e start:	8h1	10 163.	>
Release: D	ate /tin	ne end:	8/2/	10 103	<u>.</u>
Acclimation	n:	Water:	Mod. h	ard syn. I	FW been
			Other_		
			Tempe	rature (°	C): <u>&5</u>
Feeding:			test: Yo	CT/ <i>Selen</i> it Fed	astrum
Illuminatio	n: 16L	:8 D 10-	20 uE/m²	²/s	
Test cham	ber siz	ze:/_	30 ml		
Solution v	olume		, 15 ml		m1
Number of				2	
initial num	ber of	daphni	ds/replic	cate: 5	
Template :	numbe	r: <i>N</i> 1	14		
Set up: Date (Day 0): 8/2/10					
				05	
			•	1420	
			added ils):_ <i>U/</i>		
End of Te		ab Wa		Site Wa	
Water Qu	· -	Control	Mort	Control	
Temp (°C	' ⊢`		35	25	
1 '	ון ב	8.28	<u>වැටු</u>	8.14	8.17
D.O. (mg/ Cond. (us	$\frac{1}{8}$	5.4 5.68	59/	8/2	9.0
Mort=Lowes test	t conce	ntration	with 100%	mortality	at end of

EFFLUENT, STREAM & DILUTION WATER CHARACTERISTICS FORM ETF2031WER

COASTAL BIOANALYSTS, INC EFFECTIVE DATE: 2/9/09

INITIAL SAMPLE CHARACTERIZATION			
Source	Effluent	Stream	Site
Tot. Res. Chlorine (mg/i)	4g.L.	AV	~A_
Hardness (mg/l CaCO ₃)	200	1	\
Alkalinity (mg/l CaCO ₃)	103		
NH₃-N (mg/l)	(1.0)	1	
Color/Appearance ²	CY		
Obvious Odor?	۸٥		
Date/Initials	8/2 1440		

DILUTION WATER CHA	RACTERISTIC	s
Test	Range-finding	Definitive
Temperature (°C)	25	25
Conductivity (uS/cm)	528	495
D.O. (mg/l)	8.2	8,2
pH (S.U.)	8.21	8.34
Hardness (mg/l CaCO ₃)	150	198
Alkalinity (mg/l CaCO ₃)	94	129
NH₃-N (mg/l)	41,0	<1.6
Date/Initials	8/2 63	814 GM

Test	Range-finding	Defi	nitive	"A" Bottle # <u>328</u>
Source	Site (Mix)	Effluent	Stream	"A" Bottle # 328 Bal. Calib. Chk: 100 mg wt: 100 mg
Prep Temperature (°C)	25	25	ΛĤ	Stock = <u>67 mg/ 25 ml</u> *
Conductivity (uS/cm)	795	818	1	Prepared by: Po Date: -14/o4
D.O. (mg/l) After Warming	8.0	8,5		RANGE-FINDING TEST:
Aeration Time (min)	_	0.5		Highest Concentration = 80 ul in
Adjusted D.O.	-	8.2		ml Site water
Final pH (S.U.)	7.64	2.27		Prepared by: 69 Date: 818/16
Tot. Res. Chlorine (mg/l) ³	N.D.	ハ・カ.		DEFINITIVE TEST:
Sample Filtered (60 um)?	NA	ND		Highest Concentration = (1200 ul in
Date/Time	812 1550	8/4 1045		mi Effluent
Initials	LO	VB.		Prepared by: 1/2 Date: \$\frac{3}{4}/1.

Preparation of test solutions (definitive test)

Test Procedure	Site water	Lab Water
Dilution factor:	ロ· フx	U.7x
Volume diluted spiked effluent or SFW added to each conc. prep flask:	603ml	600 ~1
Time diluted spiked effluent or SFW added:	1/40	1/20
Volume stream water added to each flask of spiked effluent:	NA	
Time stream water added to each flask of spiked effluent:	NA	THE RESERVE OF THE PARTY OF THE

NOTES:

 ¹Q.L. = Quantification Limit, N.D. = Not Determined/Measured, NA = Not Applicable ²C-Clear, O-Opaque, T-Turbid, S-Solids (SI-Slight, M-Moderate, H-Heavy), Y-Yellow, B-Brown, Bi-Black, G-Green ³Total residual chlorine measured after sample prep only if present in initial sample characterization

Peer Rev by 65 Date 7/10/10 PROJECT I.D. E55 (10) WER (First 8 characters of Laboratory Sample ID)

ESS WO #_	
ESS PO#_	12374

ESS	ļ
Emironmental Systems Service. Ltd.	

<u>ب.</u>

Emitonments/5/50	BIOASSAY CHAIN OF CUSTODY
Customer Ro	ppahamock W45 VPDES Permit#
	tion Ortall OOL
	SAMPLE INFORMATION
<u>GRAB</u>	
Collection:	Date Time
	Sample volume Flow rate Flow rate
Effluent:	pH (SU) Temp (°C) Chlorine (mg/l)
	Dissolved O ₂ (mg/l) Conductivity (indicate unit)
	Analysis (Date/Time)
COMPOSIT	E(4HC) 8/2/10 0710 8/2/10
Collection:	From (Date/Time): 7/2/10 To (Date/Time): 7/2/10 @ 1110
	# of samples 5 Volume 5gal Flow rate = 49 4gg m
	Auto-sampler temperature (°C) N/A
Effluent:	pH (SU) 7, 24 Temp (°C) 26. Chlorine (mg/l) N/H
	Dissolved O_2 (mg/l) 0 $8/2/10$
	Analysis (Date/Time) 1010 (207/2/10)
	$(\mathcal{A}_{0}, \mathcal{A}_{0})$
Sampler's Sig	gnature WWW To The Control of the Co
Received at E Delivery met	SS Lab by: P-3(000) Date 8/2/10 Time 1-140 hod to Bioassay Lab: Coolant used:
Received at C Temperature	Coastal Lab by: P 3 low Co Date 2/2/10 Time 1440 of sample upon receipt @ Coastal Lab: 4
	Chronic Ceriodaphnia dubia Chronic Pimephales promelas Chronic Pimephales promelas Chronic Pimephales promelas
	Acute Ceriodaphnia dubia
	Acute Pimephales promelas

CLIENT: **Environmental Systems Svc**

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE: (800) 541-2116

FAX: (540) 825-4961

Special Notes:

RE: RAPPAHANNOCK WATER AND

SEWER AUTHORITY - WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 7/7/10

Time: 1430

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 7/8/10

Time: 0940

NUMBER OF CONTAINERS: 1

SAMPLE CONDITION **▼** Good ☐ Other (See C-O-C)

SAMPLE ID:

LC

10-11356 SAMPLE NO:

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	< 0.002	mg/L	EFA 7/14/10	1211

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

Date: 16-Jul-10

CLIENT: Environmental Systems Svc

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: RAPPAHANNOCK WATER AND

SEWER AUTHORITY - WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 7/7/10

Time: 1430

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 7/8/10

Time: 0940

NUMBER OF CONTAINERS: 1

SAMPLE CONDITION **☑** Good ☐ Other (See C-O-C)

SAMPLE ID:

L4

SAMPLE NO:

10-11357

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.017	mg/L	EFA 7/14/10	1217

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

Date: 16-Jul-10

Page I of I

Environmental Systems Svc CLIENT:

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: RAPPAHANNOCK WATER AND

SEWER AUTHORITY - WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 7/7/10

Time: 1430

COMPOSITE COLLECTION:

Start Date:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 7/8/10

Time: 0940

NUMBER OF CONTAINERS: 1

SAMPLE CONDITION **☑** Good ☐ Other (See C-O-C)

SAMPLE ID:

L5

SAMPLE NO: 10-11358

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.025	mg/L	EFA 7/14/10	1219

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

Laboratory Director

Date: 16-Jul-10

CLIENT: Environmental Systems Svc

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE; RAPPAHANNOCK WATER AND

SEWER AUTHORITY - WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 7/7/10

Time: 1430

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 7/8/10

Time: 0940

NUMBER OF CONTAINERS: 1

SAMPLE CONDITION **☑** Good ☐ Other (See C-O-C)

SAMPLE ID:

L6

SAMPLE NO: 10-11359

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.035	mg/L	EFA 7/14/10	1221

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

-Laboratory Director

Date: 16-Jul-10

CLIENT: Environmental Systems Svc

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: RAPPAHANNOCK WATER AND

SEWER AUTHORITY - WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 7/7/10

Time: 1430

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 7/8/10

Time: 0940

NUMBER OF CONTAINERS: 1

SAMPLE CONDITION **☑** Good ☐ Other (See C-O-C)

SAMPLE ID:

SC

SAMPLE NO: 10-11360

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.018	mg/L	EFA 7/14/10	1224

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

Elaine Claiborne

Date: 16-Jul-10

Laboratory Director

* Andria Swann from ESS called to verify which samples to run 7-12-10 AML # additional HNO3 added to 10.11356-11360 upon arrival ame

CHAIN OF CUSTODY

												, A	NAL'	YSES F	EQUI	ESTE)	
									Bottle I.D			A			\top			\top
		: Environmental Syster	m Service	s			_		Preserv.			2						1
	-	: Cody Hoehna	1	<u>elephone</u>	e: <u>540-82</u>	5-6660	_			Ĭ								\top
F		: Cody Hoehna		Fax	c: <u>540-82</u>	5-4961											f	
	Address	: 218 N Main St.			`													
		Culpeper, Va. 22701										(निवरे	ľ					
	Project ID	: Rappahannock Water and	Sewer Auth	ority - WEF	Study							<u>ك</u>						
		PO#11668							_	J	J.							
		<u> </u>		Compo			Gral				0	7		1				
JRA	Sample	Sample Location	Start	Start	End	End	Date	Time	Total #	70	Q	9		1				
ID# 10	Type*		Date	Time	Date	Time			of cont.	`	ĺ		1			L		
11356	WW	LC					7/1/10	1430		<u>L</u>		1						
		LI								<u> </u>		1						
		L2				ļ												
		L3	_	<u> </u>				\bot				/						┸
11357		Ly				 		1	\bot	\perp		~		igsquare				
	1 1	15		 				+				4			4			Т.
11359	1 1	16		- 		 		+				V	<u> </u>	——	\perp			—
1131.0	+	<u>L7</u>		_		 		+		ļ		<u> </u>	ļ	igwdown				┷
11360	 .[- -	SC SI					+V	 \ /	+V-	-		V	1	igspace				┦—
*14/14/- 14/ 1		 	1047 14					10						<u> </u>				<u> </u>
-vvvv= vvastewater,	GVV = Groun	ndwater, DW - Drinking Water	er, HW - Haz	ardous Wa	ste, OTHE	र ड												
Sampled By:				D-4- (T)							ervativ			_				
Relinquished By:		- ^ ·	$\overline{}$	Date/Tim Date/Tim				_				6 = Na ₂ S ₂				ic Acid +	HCI	
Received By:		COS PAG	-	— Date/Tim Date/Tim				_				7 = NaOH			HCI			
Relinquished By:	1105) CP 1/19			ne: 7~%	.16	naux	_				8 = H ₂ SO				etate + I	NaOH	
Received By:	() 4 (000 4-0000			ne: 7.8		190 J	_				9 = NH ₄ C			Na₂SO₃	-		
raddived by.		ace_meens		_ Date/ III	<u> </u>	10	<u> (97,7C)</u>	_		5 = N	a ₂ 5 ₂ C	' 3		14=	Na ₂ SO ₃	3 + H ₂ SC) ₄	
for Compliance		•		VOA Chi	orine Chec	k POS	NEGB	r		CN I	starfa	rence Che	sak.	Positive	Maga	tive		
Not for Complian	nce			Dooblosi		V					0 15				Nega	1AG		
				Νī	XTE:	PLE	ASE	DO	NOT		Oxidi	zing Ager	nt:			_		
		PAUE 14	2	ANA	LYZE	CU	SAM	PLES CAMPI	UNTI	Arriva	al Ten	np:	5.9	<u>, </u>	_°c			
				NOTH	VIED	re. w	7.110N		~ / / /									
		JAMES R. RI	EEU ar	na ASS	OCIA	res (7	57) 87	3-4703	3; FAX	(75	7) 8	373-1	498					

770 Pilot House Drive, Newport News, VA 23606

CLIENT: Environmental Systems Svc

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: RAPPAHANNOCK WATER AND

SEWER AUTHORITY - WER STUDY

S3

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 7/7/10

Time: 1430

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 7/8/10

Time: 0940

NUMBER OF CONTAINERS: 1

SAMPLE CONDITION Good Other (See C-O-C)

SAMPLE ID:

SAMPLE NO: 10-11361

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.168	mg/L	EFA 7/14/10	1232

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

√ Elaine Claiborne -Laboratory Director

CLIENT: Environmental Systems Svc

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: RAPPAHANNOCK WATER AND

SEWER AUTHORITY - WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 7/7/10

Time: 1430

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 7/8/10

Time: 0940

NUMBER OF CONTAINERS: 1

SAMPLE CONDITION **☑** Good ☐ Other (See C-O-C)

SAMPLE ID:

SAMPLE NO: 10-11362

S4

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.227	mg/L	EFA 7/14/10	1234

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

CLIENT: Environmental Systems Svc

ATTN:

Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: RAPPAHANNOCK WATER AND

SEWER AUTHORITY - WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 7/7/10

Time: 1430

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 7/8/10

Time: 0940

NUMBER OF CONTAINERS: 1

SAMPLE CONDITION ✓ Good ☐ Other (See C-O-C)

SAMPLE ID:

S5

SAMPLE NO:

10-11363

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.315	mg/L	EFA 7/14/10	1236

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal,

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

CLIENT: Environmental Systems Svc

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: RAPPAHANNOCK WATER AND

SEWER AUTHORITY - WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 7/7/10

Time: 1130

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 7/8/10

Time: 1130

NUMBER OF CONTAINERS: 1

SAMPLE CONDITION **☑** Good ☐ Other (See C-O-C)

SAMPLE ID: **SFW** SAMPLE NO: 10-11173

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
TOC	*5310B	0.5	1.0	mg/L	ARC 7/13/10	0822
Dissolved Organic Carbon	*5310B	0.5	< 0.5	mg/L	ARC 7/13/10	0822

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

*SM 20 Ed.

RESPECTFULLY SUBMITTED

Haine Claiborne Laboratory Director

CLIENT: Environmental Systems Svc

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: RAPPAHANNOCK WATER AND

SEWER AUTHORITY - WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 7/7/10

Time: 1130

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 7/8/10

Time: 1130

NUMBER OF CONTAINERS: 1

SAMPLE CONDITION **☑** Good ☐ Other (See C-O-C)

SAMPLE ID: SITE SAMPLE NO: 10-11174

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
TOC	*5310B	0.5	6.2	mg/L	ARC 7/13/10	0822
Dissolved Organic Carbon	*5310B	0.5	3.5	mg/L	ARC 7/13/10	0822

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

*SM 20 Ed.

RESPECTFULLY SUBMITTED

Elaine Claiborne -Laboratory Director

PAGE 2 OF 2

for Compliance

Not for Compliance

CN Interference Check: Positive Negative

Sulfide:

tradditional HNO3 added to 10.11361-11363 upon arrivalance

Company Name: ESS

Company Name: ESS ANALYSES REQUESTED Company Contact: Telephone: Results To: Cody Hochna Address: 218 11 Mais St (***) Project ID: Composite Grab JRA Sample Location Sample Start Start End End Date Time Total # ID# *10* Type* Date Time Date Time of cont. WW 52 7/2/10 1430 1136 11362 11363 S 7 SFW 7/1/10 1130 SITE 1/30 *WW= Wastewater, GW = Groundwater, DW - Drinking Water, HW - Hazardous Waste, OTHERS Preservatives: Sampled By: Date/Time: 556 AND OVE $1 = <6^{\circ}C$ $6 = Na_{\circ}S_{\circ}O_{\circ} + HCI$ 10=Ascorbic Acid + HCI Relinquished By: Date/Time: フリルラ 1540 2 = HNO₃ 7 = NaOH + ZnOAc 11=HCI Received By: Date/Time: $3 = H_2SO_4 8 = H_2SO_4 + FAS$ 12=Zinc Acetate + NaOH Relinquished By: Date/Time: 7 4 = NaOH 9 = NH₄CI 13=Na₂SO₂ + HCl Received By: Date/Time: 7 14=Na₂SO₃ + H₂SO₄ 5 = Na₂S₂O₃

Oxidizing Agent: Hoehna) notified that Doc sample was used to pour of for Toc Arrival Temp: 5.8

JAMES R. REED and ASSOCIATES (757) 873-4703; FAX (757) 873-1498

Dechlorinated: Yes

VOA Chlorine Check: POS NEG By:

770 Pilot House Drive, Newport News, VA 23606

CLIENT: **Environmental Systems Services**

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: SPERRYVILLE WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/4/10

Time: 1400

COMPOSITE COLLECTION:

Start Date:

Time: Time:

End Date:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 8/10/10

Time: 0950

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: Good Other (See C-O-C)

SAMPLE ID: SITE SAMPLE NO: 10-13159

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Dissolved Organic Carbon	*5310B	0.5	6.7	mg/L	ARC 8/10/10	1201

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

*SM 20 Ed.

NOTE: TOC analysis was performed on H2SO4 preserved sample.

Result is qualitative only and will be reanalyzed on an aliquot

with HCL preservation.

RESPECTFULLY SUBMITTED

Clariforn

Elaine Claiborne Laboratory Director

CLIENT: **Environmental Systems Services**

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: SPERRYVILLE WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/4/10

Time: 1400

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 8/10/10

Time: 0950

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: ✓ Good ☐ Other (See C-O-C)

SAMPLE ID: **SFW** SAMPLE NO: 10-13160

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Dissolved Organic Carbon	*5310B	0.5	0.8	mg/L	ARC 8/10/10	1201

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

*SM 20 Ed.

NOTE: TOC analysis was performed on H2SO4 preserved sample.

Result is qualitative only and will be reanalyzed on an aliquot

with HCL preservation.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

CLIENT: **Environmental Systems Services**

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: SPERRYVILLE WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/4/10

Time: 1400

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS SAMPLE RECEIPT:

Date: 8/10/10

Time: 0950

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: ✓ Good ☐ Other (See C-O-C)

LC SAMPLE ID:

SAMPLE NO: 10-13161

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	< 0.002	mg/L	EFA 8/18/10	1523

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

CLIENT: **Environmental Systems Services**

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: SPERRYVILLE WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/4/10

Time: 1400

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT: Date: 8/10/10

Time: 0950

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: Good Other (See C-O-C)

SAMPLE ID:

SAMPLE NO: 10-13162

L3

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.013	mg/L	EFA 8/18/10	1525

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

Environmental Systems Services CLIENT:

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: SPERRYVILLE WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/4/10

Time: 1400

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT: Date: 8/10/10

Time: 0950

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: ✓ Good ☐ Other (See C-O-C)

SAMPLE ID: L4

SAMPLE NO: 10-13163

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.018	mg/L	EFA 8/18/10	1533

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

CLIENT: **Environmental Systems Services**

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: SPERRYVILLE WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/4/10

Time: 1400

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 8/10/10

Time: 0950

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: Good Other (See C-O-C)

SAMPLE ID:

L5

SAMPLE NO: 10-13164

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.025	mg/L	EFA 8/18/10	1535

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

CLIENT: **Environmental Systems Services**

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: SPERRYVILLE WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/4/10

Time: 1400

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 8/10/10

Time: 0950

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: ☐ Good ☐ Other (See C-O-C)

SAMPLE ID:

SAMPLE NO: 10-13165

L6

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.034	mg/L	EFA 8/18/10	1536

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal,

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

CLIENT: Environmental Systems Services

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: SPERRYVILLE WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/4/10

Time: 1400

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 8/10/10

Time: 0950

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: ✓ Good ☐ Other (See C-O-C)

SAMPLE ID:

SAMPLE NO: 10-13166

L7

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.050	mg/L	EFA 8/18/10	1538

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

CLIENT: **Environmental Systems Services**

ATTN: Cody Hoehna

GRAB COLLECTION:

ADDRESS: 218 N. Main Street

Date: 8/4/10

Time: 1400

Culpeper, VA 22701

COMPOSITE COLLECTION:

PHONE:

(800) 541-2116

Start Date:

Time:

FAX:

(540) 825-4961

End Date:

Time:

Special Notes:

RE: SPERRYVILLE WER STUDY

PICK UP BY: UPS

SAMPLE RECEIPT:

SAMPLE COLLECTED BY: CLIENT

Time: 0950

Date: 8/10/10

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: Good Other (See C-O-C)

SAMPLE ID:

S4 + SC

SAMPLE NO: 10-13167

	Method	JRA				
Parameter	Number	QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	*	mg/L	EFA 8/18/10	1540

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

* #1 S4- 0.220 mg/L

* #2 SC- 0.017 mg/L

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

CLIENT: **Environmental Systems Services**

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: SPERRYVILLE WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/4/10

Time: 1400

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS SAMPLE RECEIPT:

Date: 8/10/10

Time: 0950

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: ✓ Good ☐ Other (See C-O-C)

SAMPLE ID:

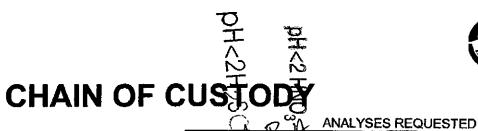
S5 + S6

SAMPLE NO: 10-13168

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	*	mg/L	EFA 8/18/10	1544

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.


Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

* #1 S5- 0.302 mg/L

* #2 S6- 0.632 mg/L

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

Company Name: Environmental System Services Preserv. Company Contact: Cody Hoehoca Telephone: 540-425-10660 Results To: Fax: 540-425-4961 Address: 218 N main 5+ Culpeger, VA. 22701 Project ID: Specawille WER Study Grab Composite JRA Sample Sample Location Start End Date Time Total # Start End ID# 10 Type* Date Time Date Time of cont. 13159 WW SITE 8/4/0 /400 Z. 2 SOW 4 1+1 WW= Wastewater, GW = Groundwater, DW - Drinking Water, HW - Hazardous Waste, OTHERS Preservatives: Date/Time: 8/4/13 /730 Sampled By: $1 = <6^{\circ}C$ $6 = Ne_2S_2O_3 + HCI$ 10=Ascorbic Acid + HCI Relinquished By: Date/Time: 2 ≈ HNO₃ 7 = NaOH + ZnOAc 11=HCI Received By: Date/Time: 3=H2SO4 8=H2SO4+FAS 12=Zinc Acetate + NaOH Date/Time: 8/10/40 @ 096 Relinquished By: 4 = NaOH 9 = NH₄CI 13=Na₂SO₃+ HCl Received By: $5 \approx Na_2S_2O_3$ 14=Na₂SO₃ + H₂SO₄ CN Interference Check: for Compliance VOA Chlorine Check: POS NEG By: Positive Negative Not for Compliance Dechlorinated: Yes Sulfide: *DOC sample received improperly preserved - analysis could not be performed. Informed client - they will resend TOC/DOC. TOC Oxidizing Agent:

CLIENT: Environmental Systems Svc

ATTN:

Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: SPERRYVILLE WER STUDY #2

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/19/10

Time: 1100

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT: Date: 8/20/10

Time: 0940

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: ☑ Good ☐ Other (See C-O-C)

SAMPLE ID: SAMPLE NO: **SFW**

10-13777

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
TOC	*5310B	0.5	1.6	mg/L	ARC 8/24/10	0756
Dissolved Organic Carbon	*5310B	0.5	0.8	mg/L	ARC 8/24/10	0756

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

*SM 20 Ed.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

CLIENT:

Environmental Systems Svc

ATTN:

Cody Hoehna

ADDRESS: 218 N. Main Street Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes:

RE: SPERRYVILLE WER STUDY #2

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date:

Time:

COMPOSITE COLLECTION:

Start Date: 08/02/10 Time: 0710

End Date: 08/02/10 Time: 1110

PICK UP BY: UPS

SAMPLE RECEIPT: Date: 8/20/10

Time: 0940

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: Good Other (See C-O-C)

SAMPLE ID: **EFFLUENT** SAMPLE NO: 10-13778

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
TOC	*5310B	0.5	6.2	mg/L	ARC 8/24/10	0756
Dissolved Organic Carbon	*5310B	0.5	4.3	mg/L	ARC 8/24/10	0756

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

*SM 20 Ed.

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

CLIENT: **Environmental Systems Services**

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes: REVISED REPORT

(Parameter)

RE: SPERRYVILLE WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/4/10

Time: 1400

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 8/10/10

Time: 0950

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: Good Other (See C-O-C)

SAMPLE ID: SITE SAMPLE NO: 10-13159

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
TOC	*5310B	0.5	6.7	mg/L	ARC 8/10/10	1201

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

*SM 20 Ed.

NOTE: TOC analysis was performed on H2SO4 preserved sample.

Result is qualitative only and will be reanalyzed on an aliquot

with HCL preservation.

RESPECTFULLY SUBMITTED

rice Cladorie

Elaine Claiborne Laboratory Director

Date: 06-Oct-10

DECETTED COT 1 2 2010

CLIENT: **Environmental Systems Services**

ATTN:

Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

(800) 541-2116

FAX:

(540) 825-4961

Special Notes: REVISED REPORT

RE: SPERRYVILLE WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/4/10

Time: 1400

COMPOSITE COLLECTION:

Start Date:

Time: Time:

End Date:

PICK UP BY: UPS SAMPLE RECEIPT:

Date: 8/10/10

Time: 0950

NUMBER OF CONTAINERS: 2

SAMPLE CONDITION: ✓ Good ☐ Other (See C-O-C)

SAMPLE ID: **SFW** SAMPLE NO: 10-13160

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
TOC	*5310B	0.5	0.8	mg/L	ARC 8/10/10	1201

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal.

Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates.

*SM 20 Ed.

NOTE: TOC analysis was performed on H2SO4 preserved sample.

Result is qualitative only and will be reanalyzed on an aliquot

with HCL preservation.

RESPECTFULLY SUBMITTED

ine Chalone

Elaine Claiborne Laboratory Director

Date: 06-Oct-10

RECEIVED COT 1 2 2013

CLIENT: Environmental Systems Svc

ATTN: Cody Hoehna

ADDRESS: 218 N. Main Street

Culpeper, VA 22701

PHONE:

FAX:

(800) 541-2116 (540) 825-4961

Special Notes:

RE: SPRINGVILLE WER STUDY

SAMPLE COLLECTED BY: CLIENT

GRAB COLLECTION:

Date: 8/4/10

Time: 1400

COMPOSITE COLLECTION:

Start Date:

Time:

End Date:

Time:

PICK UP BY: UPS

SAMPLE RECEIPT:

Date: 11/2/10

Time: 0940

NUMBER OF CONTAINERS: 1

SAMPLE CONDITION: ✓ Good ☐ Other (See C-O-C)

SAMPLE ID: S7

SAMPLE NO: 10-17966

Parameter	Method Number	JRA QL	Result	Unit	Analyst Date	Time
Total Copper	200.7	0.002	0.597	mg/L	EFA 11/5/10	1049

NOTES:

JRA Quantification Level is the concentration of the lowest calibration standard above zero with a reliable signal. Reproduction of this report is not permitted, except in full, without written approval from James R Reed & Associates. The results on this report relate only to the sample(s) provided for analysis.

cc: Pete Delisle @ Coastal Bioanalyst

@ Fax 804-695-1192

RESPECTFULLY SUBMITTED

Elaine Claiborne Laboratory Director

Date: 05-Nov-10

Please Copy Pete Deliste, CHAIN OF CUSTODY Coastel Biochelyste at PFD@ WASTALBIO. COM "I FAX 804-695-1192

ANALYSES REQUESTED Company Name: Environmental Systam Services Bottle I.D Co dy Mochas Telephone 540-825-6660 Company Contact: Preserv. Fax: _____ Results To: 218 N. MEINST Address: Senty v.11 wer study Project ID: COMPOSITE **GRAB JRA** Sample Start Start End End Total # ID #10 Type* Time of cont. Sample Location Date Time Date Time Date 17966 WW 8/4/12 1400 "WW= Wastewater, GW = Groundwater, DW - Drinking Water, HW - Hazardous Waste, OTHER Preservatives: Date/Time: 8/4/10 1403 $1 = <6^{\circ}C$ $6 = Na_2S_2O_3 + HCI$ Sampled By: 10=Ascorbic Acid + HCI Relinquished By: Date/Time: 2 = HNO₃ 7 = NaOH + ZnOAc 11=HCI Received By: Date/Time: $3 = H_2SO_4 \ 8 = H_2SO_4 + FAS$ 12=Zinc Acetate + NaOH : Relinquished By: Date/Time:

for Compliance

! Received By:

___Not for Compliance

* additional 2 mLs HNO2 added to 10.17966 upon

VOA Chlorin	e Check: POS_	NEG	By:	
Dechlorinate	ed:Yes			

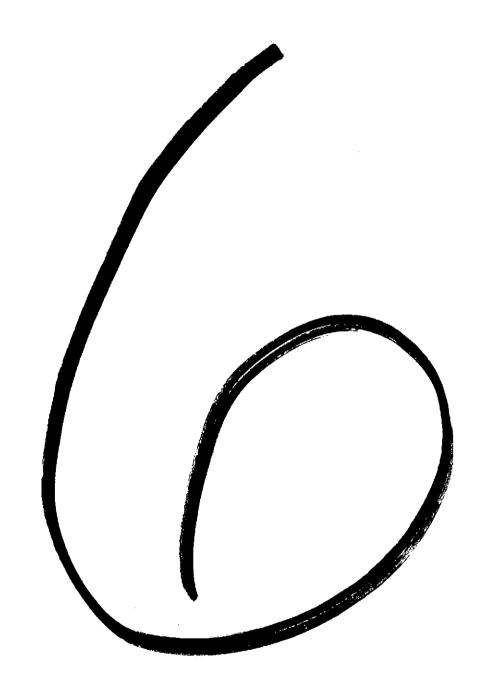
Date/Time:

Phenolic Interference Check: Positive Negative Oxidizing Agent:

4 = NaOH 9 = NH₄CI

13=Na₂SO₃ + HCI

 $5 = Na_2S_2O_3$


14=Na₂SO₃ + H₂SO₄

CN Interference Check:	Positive	Negative	
Sulfide:			
Oxidizing Agent:			

Arrival Temp:

arrival pmi

JAMES R. REED & ASSOCIATES (757) 873-4703 • FAX (757) 873-1498 770 Pilot House Drive, Newport News, VA 23606

ENVIRONMENTAL SYSTEMS SERVICE, LTD.

Page:

1

Work Order #: 10124 Contract #: 06/4 Customer #:

4693 Customer PO #: SPERRYVILLE STP

RAPPAHANNOCK COUNTY WSA

ATTN: TROY JENKINS

P. O. BOX 253

SPERRYVILLE, VA 22740

Job Location:

WER STUDY

ANDRIA SWANN Collected by:

Date Received: 07/06/2010

TSS LAB CONTROL STANDARD WAS ABOVE OC ACCEPTANCE LIMITS.

TAG #: 37143 SAMPLE POINT:

OUTFALL 001

SAMPLE DATE: 07/05/2010

Unit Rpt. Limit Method Anlys Date Time Inj Description Result SM 5210 07/06/10 15:30 MS 1.00 SM 2540D 07/08/10 12:46 BW 0.50 SM 4500NH3C 07/12/10 14:00 TA 0.05 SM 4500NBE 07/15/10 15:10 JI 0.0500 SM 4500ND2E 07/15/10 15:10 JI Biochemical Oxygen Demand mq/1Total Suspended Solids 1.34 mg/l 2.18 Total Kjeldahl Nitrogen mg/1Total Phosphorus 4.82 $m\alpha/1$ 13:25 DOI 31,7 Nitrite + Nitrate $m\alpha/1$ Total Organic Carbon 1.00 SM 5310C 07/09/10 16:38 DO: <1.00 mg/11.00 SH 5310 C 2 SM 2340C 2 SM 2320B 0.05 SM 4500PE 0.005 EPA 200.8 0.005 EPA 200.8 SM 5310 C 07/09/10 16:38 DO: SM 2340C 07/08/10 12:00 PH SM 2320B 07/12/10 14:00 JI <1 Dissolved Organic Carbon mq/1Total Hardness 133 mg/l Alkalinity, Total 107 mg/1SM 4500PE 07/06/10 17:05 JI Orthophosphate, as P 4.59 ${\sf mg/1}$ 0.01507/12/10 HC Copper, Dissolved mg/l HG Copper, Total Recoverable 0.017 07/12/10 mg/l 14:10 BW SM 4500NH3D 08/03/10 Ammonia, as N 0.61 mg/10.10

Reviewed by:

Report Date:

August 06, 2010

VA LAB ID#

00115

SAMPLE CHAIN OF CUSTODY RECORD											ENVIRONMENTAL SYSTEMS SERVICE, LTD.												
Company <u>6</u>	<u> </u>					_						7	<u> </u>	218 No	rth Mair	n St.			500 Stone St.				
<u>ے۔</u> Contact	<u>du Hoe</u>	<u> </u>	عـ										Post Office Box 520						Post Office Box 736				
Muui ess						_		13	Sovinou	nen	2/5\ster	ns.5e4	rice, Ud	Culpeper, VA 22701					Bedford, VA 24523				
Adaress						_								800-54		_					540-586-5413 Fax 540-586-5530		
Phone	Phone						www.ess-services.com								5-6660	Fax:	540-825	5-4961			Fax	540-5	86-5530
PhoneRappahannock WSA — Project Name/Site _ WER STUDY														ANALYSES									
Project Nan	ne/Site		K ST	CDY		P.O.#_	$\overline{}$							-	ω	/-		ANAI				7	
Sampled By	: And		Suc	ಬ	Such	(Signatu)u	e				<u>-</u>	/ }	3/5	Now	. K	$\int_{-\infty}^{\infty}$		AIX + LESS		يخ/ د/د	3(3)
ESS	COLLEC		in Name)	SAMP) F			RS			SAMP	1 E			2 <u>)</u> ,∠	<u> </u>	7/2		7/ <u>T</u>	⁵ /*	7 ~	,/ <u>~</u>	-/ ± ~
SAMPLE ID.	DATE	TIME		LOCA		SIZE	G/P	#	GRAE	COME			PRESERVATIVE	B	污	73		19	\z	/ Š		1	COMMENTS
31143	7/5/10	1035	+b -	Outfall	∞1	IL	P	+	`	1	ωι	رر	none	X								,	* Filtered
- 1 1	1	١.		1		750	P	2		١l	1		HZSCY		X	×	×						on the
						11	6	1 .	\neg	Ħ			4-500		,			X	ź.				Field.
			-			250	P	;	+	$\dagger \dagger$		(*	HAIO,					, , , , , , , , , , , , , , , , , , ,	<u>~</u>				ne.G.
						250	, P	2	\neg				rone.							×			
						750	P	n	1	11	\neg		#1003	1							4		
	<u> </u>				,	250	$\overline{}$	$ \cdot $	\neg	\downarrow	1,1	,)	#100-									X	
-		 					<u> </u>	Ħ		7	<u> </u>		77.73										Preservative
					****																		pH Check:
	****									7	-,-												(2)
																<u> </u>	<u></u> .			<u> </u>			
Relinquished by	مستمال	Date 15	Time	Received by:				Relin	quish	ed by	y:				Date		Time		Receiv	ed by:			
Relinquished by:		Date	Time	Received by:				Relin	Iquish	ed by	y:				Date		Time			ed for L			
															7-6	6-	Oca) OD	A	1 6	0	בר	olw are
Method of Delivery	:				On Ice?	(v)	N	•	TAT:						 -	_ <u>~</u>	10	101	<u> </u>				
□ UPS] Fed!	Ex 🔀	N Hand Deliver	y Received	. B.8	<u>_</u> .	°C			al Result:			_	W.C).#	10	19	4_		Amt Paid \$		
MIRS Overnight M Post Office						der 2 hours	3		Ex	tra ci	harges	will a	apply for Rush TAT					Che	Check #				

* Samples were left in walk-in refridgerator due to haliday *

Revised 10/20/09

SAMPLE CHAIN OF CUSTORY RECORD									ENVIRONMENTAL SYSTEMS SERVICE, L1D.													
Company <u>〔</u>							218 North Main St.			500 Stone St.	500 Stone St.			8321 Leishear Road				3917 Westpoint Blvd.				
Company <u>c</u>	مالياه	2010/00		<u></u>				Post Office Box 520		Post Office Box 736			Laurel, MD 20723					uite E				
Contact	can the	EVILOR							r, VA 2		Bedford, VA 24523 540-586-5413								Winston-Salem, NC 27103			
Address Address								300-541					301-017 SSOL						910-659-3378			
Augress Phone	AddressPhoneRappanannock_WSA-Project Name/Site_WER_STUDY							540-825	-6660		Fax 540-586-55	Fax 540-586-5530			Fax 301-617-3426				Fax 910-659-3379			
	20000	3000cV	wsA	ســ																		
Proiect Nai	me/Site	WER	57	LODA		P.O.#			<u></u>					-,	. , , , ,	ANAL	YSE	s	- , .			
Sampled B				<u></u>	uelli	3	ہں	n		<u>-</u>			w/ 'x) *:) SS -	\sqrt{c}	/ j	×	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		s/\ \	
		(Print N	lame)			(Signatur	-			<i>U</i>			¥ 1.	\mathcal{Y}_{1}^{2}	1121	┦.	$/ \searrow$	∤ ₩,	15	<i>†</i> \$	<i>[</i>	
ESS SAMPLE ID.		ECTION TIME		SAMPLE LOCATION		CONTA SIZE	AINE G/P	RS H	COMP	SAMPLE MATRIX	PRESERVATIVE	#047	*				N. Y.	B	F S	3	COMMENTS	
		0635-44	Carl	D \		1L	P	7	,	w	nene		Y				У					
	7/5/10	1635		fall O	$\underline{\cup}$ 1	+	+		43							X					* Filtered	
						1L	G		火		42504			.,		\sim						
						250	P	a	Х		HWC 3	ļ		X	X						an the	
						250	P	$\lfloor \chi \rfloor$	1	$\omega\omega$	HNOS	X						<u> </u>			field.	
		<u> </u>				250	P		X		HZSOLL								X	X		
			-				1	1	X		none							X	ļ			
		-				250	+	1	 	uu	none	<u> </u>										
						}	-		-	<u> </u>		 	 				 				Preservative	
	1					 			-	-		 	 	 	- -						pH Check:	
						ļ	<u> </u>					 	 								prionesia	
												<u> </u>	Ļ	↓	ļ <u>.</u>	ļ	ļ		<u> </u>			
										ļ				<u></u>	ļ., <u>-</u>	L	ļ	ļ				
														ļ		1						
Relinguished by:	ــــــــــــــــــــــــــــــــــــــ	Date	Time	Received by:		1	_l	Reling	uished	Lby:	<u> </u>		Date		Time		Receiv	ed by:				
Aug	MAN PARK	Date	133																			
Relinquished by:		Date	_ `	Received by:				Reling	uished	by:			Date		Time		Receiv	ed for L	aborato	ry by:		
Tresinguisited by	'																					
																	<u></u>		·			
Method of Delive	ery	L	<u> </u>		Remarks:			1	TAT	.,		,										
UPS		☐ Fed Ex	, i-A.	land Delivery	David - 1	a		_	Norr	mal	Rush		W.C	D.#					Amt	Paid	\$	
U 0PS		⊔ геосх	· 5141	iana belivery	Received (ന		٠	Need	Results by	/											
☐ UPS Overnight ☐ Post Office ☐ Under 2					er 2 hour	S		Extra	charges will	apply for Rush TAT.			W.O.#					- Uneck#				

<u>Log-In / Sample Receipt Form</u>

Customer Nome:	Rapp Co	WSA	Date Received:	6/10
Custoffict Name.	1 May Co			
			•	
Sample Custodian:_				

Tag #	Bottle #	Parameter(s)	Container size	Temp.	On Ice?	pH (if preserved)	Sample condition	Sample Comments
37143		BOD	11	3.8	M	None	X00d	
	2	tss	16		7	none	0	
	3	TIKIN, TPO4	1250mC			<>		
	4	NO2 NO2	250mL			<>>		
	5	Toc	250mL			52		
	6	Doc	IL					
	17	Hardness	350ml					
	8	AK, OPO4	250mC			none		
	9	diss cu	250mL	}				
	10	total Cu	a SDML					
)(NH3 (3)	250 ml	1				added-taken from TKN bottle
			·					from TKN bottle

General Comments:

SAMPL	ENVIRONMENTAL SYSTEMS SERVICE, LTD.																				
Company _	E55					=	218 North Main St.									500 Stone St.					
Contact <u>Ca</u>	ody Ho	<u>دي ٥</u>	<u>مـــــــ</u>							<u>_</u>	5		Post C	Post Office Box 520					Post Office Box 736		
													Culpe	per, VA 22 7 0)1				Bedford, VA 24523		
Address														41-2116					540-586-5413		
Phone	Phone Rappahannock WSA — Project Name/Site					-		ww	w.es	s-se	ervices	s.com	540-82	25-6660 Fa	x: 540-82	5-4961	`		Fax	540-5	86-5530
Project Na	καρ _ me/Site	pano WE	ennoc R ST	C WSA -		_ P.O.#_						_				ANA	LYSE		<u> </u>		
Sampled B	y: And			20 0	Mudi		<u>></u>)u	سك	_					10M2/W07 1-10M02		Harrie	? ?\		ع/د آرد	3 (2)
ESS	COLLEG		nt Name)	SAMPLE	_	(Signatu	·						■ /<	stizt.	7/2		خ /ك	3/46	길		74
SAMPLE ID.	DATE	TIME		LOCATIO		CONT			GRAB		SAMPLE MATRIX	PRESERVATIVE		洞	≥/ F			/Ä		事	COMMENTS
31143	7/5/10	1035	+6	sutfall O	01	IL	P	λ	Тy	() (υW	none	X								* Filtered
				1		750	P	2	1		1	H-5011		XY	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						on the
						16	G	 				H-504		1		×	<i>-</i>				field.
		+ -						 	$\neg \vdash \mid$	+-	1		+			7.				-	Tiele.
		+ + -				150	P	ļ',	-H	+-	-	THEY 3			-	-	<u> </u>	- /			
		+	+			250		2				none	_	ļ				×			
						750	P					#1002							7		
	V			₩		250	P	1	ΙÝ	Uι	ilu	#100-								X	
_					·							1 113									Preservative
							 	 		+		1	+				 		 		
-		 	-			-	╁	╁	+	+				 			-				pH Check:
					 -	 	+		-	+			-			-	<u> </u>				12
		<u> </u>					<u> </u>					<u> </u>		ļ			ļ				
	·						<u> </u>														
Relinquished by	مسماه	Date	Time	Received by:				Relin	quished	d by:				Date	Time		Receive	ed by:			
W D	h.v	15/10	1133																		
Relinquished by:		Date	Time	Received by:	<u> </u>			Relin	quishe	d by:				Date	Time		Receive	ed for L	aborato	ry by:	· · ·
						A								7-6-	Ox	700	H	1 6	Ü	ארשים	dwara
Method of Delivery	r:				On Ice?	(Y)	Ň	<u>'</u>	TAT:					1	1.0	10	<u> </u>		I		
□ UPS	Ε] Fed E	×××	Hand Delivery	Received (Ja. 8			Nor	mat		Rush	··-	W.O.#	_{NO#} 10124			Amt	Amt Paid \$		
						@ <u>w•0</u>	<u> </u>				sults by			_		_1					
□ UPS O	ernight L	⊥ Post (Office		Unde	er 2 hours	3		Extr	a cha	ırges will	apply for Rush TAT	Γ.	W.O.#_					Check #		
					1									1					1		

* Samples were left in walk-in refridgerator due to haliday *

Revised 10/20/09

ESS
Favimemental Systems Service Ltd.

Revised: 6/25/10

Biochemical Oxygen Demand (BOD5) Standard Methods 5210, 19th ed.

Environmental Systems Service, Ltd.	CBOD Was nitrification inhibitor added to the sample? Y N
Sample Site:	Rapp Co WSA Tag #: 37143-1
Sample Point:	0011a00 001 Date Rec'd: 7/6/10
Sample Date:	7 5 10 Time: 1035
Sample Temp:	056 pH: 7.69 CI2: 40.03 mg/l
Dil H2O Temp:	MI Seed: 4 # drops: /10 ml
Analyst, Set Up:	MS Date in: 7-6-10 Time in: 1530
Analyst, Final:	ラ
Seed Correction Value (SCV):	(0.6-1.0) BLANK: 0.4 0.4 GGA: - 7 9 10 (Date last done)
Sample %	10 % 33 % 100 % % %
Bottle#	3030 3000 (1083
(D1) Initial DO	6.3 8.4 8.7
(D2) Final DO (must be ≥1.0 for calculation)	7.0 6.6 6.0
Depletion (must be ≥2.0 for calculation)	1.3 1.8 2.7
Depletion - SCV	- 1.8
BOD5 (mg/l)	- 2
Meets 2:1 Criteria	Y (N) Y (N) (Y N Y N Y N
Average BOD of 1st diluion series:	mg/l = BOD5 (mg/l) % Dilution as decimal
RPD (if duplicate per	ormed):
QC Flags:	Blank outside of acceptance range of 0.0 - 0.4 SCV outside of acceptance range of 0.6 - 1.0 GGA outside of acceptance range of 198 ± 30.5 Each of the dilutions used in set-up failed to meet proper criteria; results are estimated Sample set up outside of 48 hour holding time Sample exhibits toxicity Air bubbles present following incubation Other

Reviewed by: Th 1/12/10

SOLIDS ANALYSIS SM 2540 19th ed. Sample Site: Kapp to WSA Sample Date: ESS TAG# Sample Time: 1035 Sample Point: TSS TSS/MLSS, TS, TDS) 1272 Vessel# 970 ml of sample used X= wat of filter 0.1245 + sample (dried) 0.1232 Y= initial filter wgt 0.0013 A= X-Y 1.3462 Result (mg/l) Used all available sample Filtered for 10 minutes A x 1000 x 1000 mg/l =1747 1246 End Filtration Oven Temp Start Filtration ml of sample used icilo in (c) Time in Analysis date (ON 3 Ont (,C) 218 .34 Time out mg/l Analyst Result (report 1st value if a duplicate was analyzed) (TVSS, MLVSS, TVS) Vessel# X= (wgt from X above) Z= wgt of filter + sample after ignition B= X -Z Result (mg/l) B x 1000 x 1000 mg/l= ml of sample used Oven Temp 'C Analysis date Time in Time out Result mg/l Analyst (report 1st value if a duplicate was analyzed) (FSS, MLFSS, TFS) Total result from above (mg/l) Volatile result from above (mg/l) Total - Volatile = Fixed (mg/l)

LCS was above QC acceptance limit

COMMENTS:

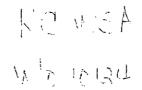
ma/l

Result

(report 1st value if a duplicate was analyzed)

Revised 6/29/10

Reviewed by: AU 7-13-10


SOLIDS ANALYSIS SM 2540 19th ed.

ESS TAG# Sample S	Site: Rapp Point: 0	Co WSA Utfall 1	(Sample Date	ستراج المراج
Vessel # ml of sample used X= wgt of filter + sample (dried) Y= initial filter wgt A= X-Y Result (mg/l) mg/l = A x 1000 x 1000 ml of sample used	755 1272 976 0.1245 0.1232 0.0013 1.3462	ed for 10 minutes Start Filtration	Used all	available sample	Oven Temp
Result 1-34 mg/l (report 1st value if a duplicate was analyzed)	7/8/10 Zcw	_ Analysis date _ Analyst	1528	Time in Time out	1077.0 Tu (,c)
(TVSS, MLVSS, TVS) Vessel # X= (wgt from X above) Z= wgt of filter + sample after ignition B= X -Z Result (mg/l) mg/l= B x 1000 x 1000					
Result mg/l (report 1st value if a duplicate was analyzed)		_Analysis date _Analyst		Time in	Oven Temp 'C
(FSS, MLFSS, TFS) Total result from above (mg/l) Volatile result from above (mg/l) Total - Volatile = Fixed (mg/l) Resultmg/l (report 1st value if a duplicate was analyzed)			Reviewed by:	Aw 7-1	3-10

* LCS was above QC acceptance limit COMMENTS: Bome LABRUED 7/5/10 AS SAMPLE DATE

Revised 6/29/10

Revit 7/13

Analytics Corporation 10329 Stony Run Lane Ashland, VA 23005

Phone: (804)365-3000 Fax: (804)365-3002

ANALYTICAL RESULTS

Workorder:

1002470 37259

Lab ID:

1002470006

Sample ID: 37143-4 OUTFALL 001

Date Received: 7/7/2010 08:00

Matrix: Aqueous Liquid

Date Collected: 7/5/2010 10:35

Samp Type: COMP

Parameters

Nitrite-Nitrate

Results Units

Report Limit

DF Prepared

Analyzed Ву

Qua) Ву

Analysis Desc: SM 5310 C TOC

<1 mg/L

7/9/2010 16:38

DOI

Analysis Desc: SM 4500NO3 F

Analytical Method: SM 4500NO3 F 31.7 mg/L

0.0500

Analytical Method: SM 5310 C

7/12/2010 13:25

DOI

Report ID: 1002470 - 709358

Page 8 of 8

This report shall not be reproduced, except in full, without the written consent of Analytics Corporation.

R' 2-12-10

Analytics Corporation 10329 Stony Run Lane Ashland, VA 23005

Phone: (804)365-3000 Fax: (804)365-3002

ANALYTICAL RESULTS

Workorder:

1002472 37143

RCWSA - WER Sti

Lab ID:

DOC

1002472001

Date Received: 7/7/2010 08:00

Matrix: Aqueous Liquid

Sample ID: 37143 OUTFALL 001

Date Collected: 7/5/2010 10:35

Samp Type: COMP

Parameters

Results Units

<1 mg/L

Report Limit

DF Prepared

Analyzed Вν

Ву

Quai

Analysis Desc: SM 5310 C

Analytical Method: SM 5310 C

1 1

7/9/2010 16:38


DOI

Report ID: 1002472 - 709039

Page 3 of 3

This report shall not be reproduced, except in full, without the written consent of Analytics Corporation.

Ne 7/15/10

chemical solutions ltd.

trace elemental analysis

ANALYTICAL REPORT

July 13, 2010

Ms. Angie Woodward

Environmental Systems Services, Ltd.

218 N. Main Street, P.O. Box 520

Culpeper, VA 22701

Client Client# : ESSL : E664

Description Sample Type

: See Below : Water : Client

Page I of I

Sample No. 10G0454-5

Customer PO

: 12215

Date Sampled Date Received

: 07/08/10 : 07/12/10

Date Completed Discard Date : 07/27/10

10G0454*

Collector

ESS# 37143-9

ESS# 37143-10

Parameter Total Copper Result 0.015 Units mg/L

PQL Date 0.005 07/12/10

Method 200.8

Analyst HG

10G0455*

Result Parameter Total Copper

0.017 *This sample was digested.

Units mg/L

PQL Date 0.005 07/12/10

Method 200.8

Analyst HG

Respectfully Submitted, Chemical Solutions, Ltd.

> Ian Milnes President

CONFIDENTIAL REPORT. This report is confidential and is for the sole use of the addressee.

This report can only be reproduced in full.

Chemical Solutions Ltd. is a NELAP accredited laboratory. The EPA lab code is PA01275.

CLIENT: Rapp CO WSA SAMPLE POINT: OUT OUT OUT SAMPLE DATE: 75 10

Tag # 31143 Parameter	Bottle #	Dilution Factor	Abs/MIs Titrant/ Raw Value	Factor	Titrant (N)	Blank (mls)	Concent. (mg/l)	Temp (°C)	Analysis Date	Analysis Time	Analyst Initials
Chloride (CI)											
Fluoride (F)											
Alkalinity, Total	8	ر ک بر ک	1, ((20.3		0.06	107		07-12-10	1400	<u>1</u> =
Alkalinity, Bicarbonate											
Alkalinity, Carbonate			···········								
Hardness, Total	7	2x	3.00	22.90		0,10	133	<u> </u>	7-8-10	1200	PH
Ammonia (NH ₃ as N)	3	1×	0.6134				0.61	19.3	\$ 3/2/10	7410	BOW
Nitrite (NO2)					***************************************						
Nitrate (NO3)											
TKN	3	1×	0.45	5.00		0.00	31,6		7/12/10	1400	7-7-
T. Phosphorus (TPO4)	3	10×	0,300	7.00		7.3.27	4.82		07-15-10	1510	ナエ
O. Phosphate (OPO4)	9	10x	0.298				4.59	·	07-06-10	1705	र ज
Hydrogen Sulfide (HS)											
Sulfate (SO4)			· ·								
COD			····								
Color (Apparent)			· · · · · · · · · · · · · · · · · · ·				CU	····			
Odor							TON				
				 							
					· · · · · · · · · · · · · · · · · · ·						

Comments:

Reviewed by: Aw Date: 8-5-10

ENVIRONMENTAL SYSTEMS SERVICE, LTD.

Page:

1

Work Order #: Contract #:

10778 06/4

Customer #:

Customer PO #: SPERRYVILLE STP

4693

RAPPAHANNOCK COUNTY WSA

ATTN: TROY JENKINS

P. O. BOX 253

SPERRYVILLE, VA 22740

Job Location:

RAPPAHANNOCK WER STUDY

Collected by:

ANDRIA SWANN

Date Received: 08/02/2010

TAG #: 38062

SAMPLE POINT: OUTFALL 001

SAMPLE DATE:

08/02/2010

Description	Result	Unit	Rpt. Limit	Method	Anlys Date	Time	Ini
Biochemical Oxygen Demand	<2	mg/l	2	SM 5210	08/03/10	15:15	TA
Total Suspended Solids	3.40	mg/l	1.00	SM 2540D	08/05/10	12:54	BW
Total Kjeldahl Nitrogen	3.01	mg/l	0.50	SM 4500NH30	08/11/10	08:00	TA
Total Phosphorus	5. Ø8	mg/1	0.05	SM 4500PBE	08/23/10	15:10	JI
Ammonia, as N	Ø. 17	mg/l	0.10	SM 4500NH3	08/16/10	14:30	B₩
Nitrite + Nitrate	38.9	mg/l	0.0500	SM 4500NO3	F 08/10/10	15:15	DOI
Total Organic Carbon	<1.00	mg/l	1.00	SM 5310C	08/04/10	15:27	DOI
Dissolved Organic Carbon	<1	mg/l	1	SM 5310 C	08/04/10	15:27	DOI
Total Hardness	207	mg/l	2	SM 2340C	08/04/10	14:30	JΙ
Alkalinity, Total	100	mg/l	2	SM 2320B	08/06/10	10:25	MS
Orthophosphate, as P	4.99	mg/l	0.05	SM 4500PE	08/03/10	14:00	JĪ
Copper, Total Recoverable	0.019	mg/l	0.005	EPA 200.8	08/11/10		HG
Escherichia coli (100 ml)	<1	MPN	1	COLILERT	08/02/10	15:35	TA

Description

TAG #: SAMPLE POINT:

SAMPLE DATE: 08/02/2010

OUTFALL 001

Copper, Dissolved 0.018 mg/1Reviewed by:

Serri

Result Unit Rpt. Limit Method Anlys Date Time Ini

EPA 200.8 08/11/10

HG

ESS LAB SERVICES

Report Date: August 31, 2010

VA LAB ID#

00115

SAMPL	E CHA	VIN O	FCU	ISTODY	RECOR	D						ENVIRONM	ENT <i>A</i>	VL SY	STE	MS SI	ERVI	CE, I	TD.			
Company _	ESS	·					•						218 No	rth Mai	n St.	,				500	Stone	St.
Contact										_	~		Post O	ffice Bo	x 520					Pos	t Office	Box 736
Address								Je 1		•	U		Culper	er, VA	22701					Bed	ford, V	A 24523
Address								(ใกงกากก	7 <i>01.</i> 7	d Systems Se	rrice, Lid	800-54	1-2116						540	-586-54	113
Phone						. (0		ww	w.ess	s-se	ervices.	.com	540-82	5-6660	Fax:	540-825	-4961			Fax	540-5	86-5530
Project Nar	ne/Site _	SE	pah	37029	- W	> ¹ → P.O.#		- (-			,		ANA	LYSE	≣S ,			,
Sampled By	y: <u>N</u> n		t Name)	wan	n de	ALL (Signatur) c		IJ	Q	س			NH3	700			Pod	38	olo:	3/	
ESS SAMPLE ID.	COLLEC DATE	CTION TIME		SAMPLE LOCATIO		CONTA	MNE G/P	RS #	GRAB		SAMPLE MATRIX	PRESERVATIVE	BoD:TSS	TKN, TPO4, NH3	NO2/NO3, TOC	၁၀၀	Hardness	Alkalinity, OPO4	"Diss. Cu	Total Cu	E.coli	COMMENTS
38062	8/2/10	1115	Ou	+fall	00	1L	Р	2	×	(ww	none	Х			,						**Filtered in
						500 ml	Р	2	Íχ		ww	H2SO4		Х	Х							Field
					-	1L	G	1	×		ww	H2SO4				Х						
						250 ml	Р	1			ww	HN03		:			Х					
9.00 L.75	\ 			1		500 ml	Р	1		4	ww	none						х				
		1		-V		250 ml	Р	2			ww	HN03							X	Х		
3806X						125 ml	Р	a	$X \perp$	\perp	ww	Na Thios.									Х	
										_												Preservative
1					77.18	ļ				4												pH Check:
										┿												-2
			-			 		_		-	·											
Relinquished by:	01/	Date	Time	Received by:		<u></u>		Reline	quished	l i by:				Date		Time		Receiv	ed by:			
Duly	WILL THE	49/0	1450												,						٠.	\
Relinquished by: Method of Delivery		Date	Time	Received by:				Relino	quished	l by:				Date	10	Time	0(Receiv	ed for 5	aborato	ry by:	
□ UPS		Fed Ex	У	Hand Delivery	On Ice?	120	и °(TAT: Nori Need		esults by	Rush	_	w.o	.#	10	11	8	<i>l</i>	Amt	Paid 9	S
□ UPS Ov	ernight [Post O	ffice		Unde	r 2 hours						pply for Rush TAT.		w.o	#					Che	ck#_	

* OPOY + DISS Cy filtered in the field.

Revised: 6/25/10

Biochemical Oxygen Demand (BOD5) Standard Methods 5210, 19th ed.

Entranmental systems service, tra	CBOD	Was nitrification	on inhibitor adde	ed to the samp	le? Y N	
Sample Site:	Rappahannock	-Wer Stu	def Tag#:	280	62	
Sample Point:	ontfall	<u> </u>	Date Rec'd:	<u> </u>	-/0	
Sample Date:	8-2-10	Time:	1115)		
Sample Temp:	20.2C pH	1: 766	Cl2:	L0.03	mg/l	
Dil H2O Temp:	20.7 C ml See	d: 4	# drops:		/10 ml	
Analyst, Set Up:	TA Date i	1:8310	Time in:	1515		
Analyst, Final:	BCW Date ou	t: 8810	Time out:	1111		
Seed Correction Value (SCV):	(0.6-1.0) . 8 BLANE	(: <u>(), 3</u> (0.0-0.4)	GGA:	(170-230)	(Date last done)
Sample %	10 % 33	% 1 00 %	%	%		%
Bottle#	43/15/0122	1006				
(D1) Initial DO	87 89	82				
(D2) Final DO (must be ≥1.0 for calculation)	7.5 7.4	6.6				
Depletion (must be ≥2.0 for calculation)	1.2 1.3	2.1				
Depletion - SCV	0.4 0.5	1.3				
BOD5 (mg/l)	4.1891015	1.3			<u> </u>	
Meets 2:1 Criteria	Y N Y N	(Ÿ)	Y N	Y N	Y N	
Average BOD of 1st diluion series:		Th 5/9/10	(D1-D2) - 3		_= BOD5 (mg/l)	
RPD (if duplicate per	rformed):		_			
QC Flags:	Blank outside of acceptance SCV outside of acceptance GGA outside of acceptance Each of the dilutions used Sample set up outside of 4 Sample exhibits toxicity Air bubbles present following Other	e range of 0.6 - 1 e range of 198 ± in set-up failed to 8 hour holding tie ng incubation	.0 30.5 meet proper c me	criteria; results	are estimated	

Reviewed by: Aw 8-9-10

SM 2540 19th ed. **SOLIDS ANALYSIS** Sample Site: Kasahannoch Sample Date: **ESS TAG#** Sample Time: Sample Point: (TSS, MLSS, TS, TDS) 56609 Vessel# (∞) ml of sample used X= wgt of filter 01237 + sample (dried) Y= initial filter wgt 0 1203 0.0034 A= X-Y 2,46 Result (mg/l) Used all available sample A x 1000 x 1000 Filtered for 10 minutes mg/l = 7554 **Start Filtration** End Filtration Oven Temp ml of sample used 104.2 In ('C) Analysis date Time in (OU. 2 Out ('C) Time out Result mg/l Analyst (report 1st value if a duplicate was analyzed) (TVSS, MLVSS, TVS) Vessel# X= (wgt from X above) Z= wgt of filter + sample after ignition B=X-ZResult (mg/l) B x 1000 x 1000 mg/l= ml of sample used Oven Temp 'C Analysis date Time in Result mg/l Time out Analyst (report 1st value if a duplicate was analyzed) (FSS, MLFSS, TFS) Total result from above (mg/l) Volatile result from above (mg/l) Total - Volatile = Fixed (mg/l) Reviewed by: AW 8-9-10 Result

COMMENTS:

(report 1st value if a duplicate was analyzed)

CLIENT: Rappahannoch=WERSAMPLE POINT: O WHALLOOL SAMPLE DATE: 8-2-10

Tag #		Dilution	Abs/MIs								
38062	Bottle #	Factor	Titrant/ Raw Value	Factor	Titrant (N)	Blank (mls)	Concent. (mg/l)	Temp (°C)	Analysis Date	Analysis Time	Analyst Initials
Chloride (CI)					(<u> ()</u>				<u> </u>	
Fluoride (F)											
Alkalinity, Total	7	51	1.09	19.8		0.08	100		8.6.10	1025	MS
Alkalinity, Bicarbonate							, , , , , , , , , , , , , , , , , , , ,				
Alkalinity, Carbonate						-					
Hardness, Total	le	2×	4.54	23.3		0.10	207		08-04-10	1430	77
Ammonia (NH ₃ as N)	3	1×	0.1714				0.17	19.9	3/16/10	143~	BCW
Nitrite (NO2)			-				***				
Nitrate (NO3)											
TKN	3	1× 1/2	0,40	228		0.00	3.51		Stutio	800 ·	134
T. Phosphorus (TPO4)	3	25×	0.127				5.08		8/23/10	1510	JI
O. Phosphate (OPO4)		10x	0.323				4.99		08-03-10	1400	ずエ
Hydrogen Sulfide (HS)											
Sulfate (SO4)											
COD											
Color (Apparent)							CU				
Odor							TON				

Comments:

Reviewed by: 10 Date: 8-30-10

Analytics Corporation 10329 Stony Run Lane Ashland, VA 23005

Phone: (804)365-3000 Fax: (804)365-3002

ANALYTICAL RESULTS

Workorder:

1002898 38044

Sample ID:

Lab ID:

1002898007

38062 OUTFALL 001

Date Received: 8/4/2010 09:00

Date Collected: 8/2/2010 00:00

Matrix: Aqueous Liquid

Samp Type: COMP

Parameters

Results Units

Report Limit

DF Prepared

Ву

Analyzed

Qual Ву

Analysis Desc: SM 5310 C <1 mg/L TOC

Analytical Method: SM 5310 C

1

8/4/2010 15:27

DOI

Analysis Desc: SM 4500NO3 F

Analytical Method: SM 4500NO3 F

38.9 mg/L Nitrite-Nitrate

0.0500

1

8/10/2010 15:15

DOI

Analytics Corporation 10329 Stony Run Lane Ashland, VA 23005

Phone: (804)365-3000 Fax: (804)365-3002

ANALYTICAL RESULTS

Workorder:

1002897 38042

Lab ID:

1002897002

Sample ID:

Parameters

38062 OUTFALL 001

Date Received: 8/4/2010 09:00

DF Prepared

Matrix: Aqueous Liquid

Date Collected: 8/2/2010 00:00

Samp Type: COMP

Ву Qual

Analysis Desc: SM 5310 C

Analytical Method: SM 5310 C

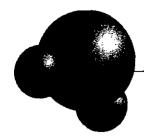
Report Limit

DOC

<1 mg/L

Results Units

1


8/4/2010 15:27

Anaiyzed

DOI

Report ID: 1002897 - 722186

NC 8/16/10

chemical solutions ltd.

trace elemental analysis

ANALYTICAL REPORT

August 12, 2010

Ms. Angie Woodward

Environmental Systems Services, Ltd.

218 N. Main Street, P.O. Box 520

Culpeper, VA 22701

Client

: ESSL : E664

Client #

Description

10H0589*

Sample Type

Collector

: Water : Client

ESS # 38062

: See Below

Result Parameter Copper

Units 0.019 mg/L

POL Date 0.005 08/11/10 Method

Analyst

Date Completed: 08/11/10

200.8 HG

Page 1 of 1

Customer PO

Date Sampled

Date Received

Discard Date

Sample No. 10H0589

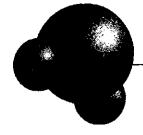
: 12246

: 08/09/10

: 08/26/10

* This sample was digested.

Respectfully Submitted, Chemical Solutions, Ltd.


Ian Milnes President

CONFIDENTIAL REPORT. This report is confidential and is for the sole use of the addressee.

This report can only be reproduced in full.

Chemical Solutions Ltd. is a NELAP accredited laboratory. The EPA lab code is PA01275.

re 8/16/10

chemical solutions ltd.

trace elemental analysis

ANALYTICAL REPORT

August 12, 2010

Ms. Angie Woodward

Environmental Systems Services, Ltd.

218 N. Main Street, P.O. Box 520

Culpeper, VA 22701

Client Client#

: ESSL

: E664

Description Sample Type Collector

: Water : Client

: See Below

Customer PO

Page 1 of 1

: 12246

Date Sampled

Date Received : 08/09/10 Date Completed

Sample No. 10H0590

Discard Date

: 08/11/10 : 08/26/10

10H0590* Parameter

Copper

ESS #38063

Result Units 0.018 mg/L

POL Date 0.005 08/11/10 Method 200.8

Analyst

HG

* This sample was digested.

Respectfully Submitted, Chemical Solutions, Ltd.

lan Milnes President

CONFIDENTIAL REPORT. This report is confidential and is for the sole use of the addressee.

This report can only be reproduced in full.

Chemical Solutions Ltd. is a NELAP accredited laboratory. The EPA lab code is PA01275.

Time of Receipt:	1500
(sam	ple must be set up within 2 hours of receipt)

	E. coli by Quanti-Tray 2000 IDEXX Colilert	(Check one) 18 hour 24 hour
Sample Point: Outla		
Sample Date:	2-10 Sample Time: _	1115
Date In: 8/2/10	_ Time In: <u>\\\ \\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	t In:
Date Out: 8 3 0	Time Out:	t Out:
, ,		
E. coli:	# Fluorescing <u>Large</u> Wells (0-49)	
	# Fluorescing Small Wells (0-48)	0
	MPN/100 ml =	
	(Refer to IDEXX Quanti-Tray / 2000 MPN T	`able)

Comments:

Reviewed by:

Date:8-4-10